Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| def single_inference(): | |
| pass | |
| def blended_inference(): | |
| pass | |
| TITLE = """MKG Analogy""" | |
| with gr.Blocks() as block: | |
| with gr.Column(elem_id="col-container"): | |
| gr.HTML(TITLE) | |
| with gr.Tab("Single Analogical Reasoning"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| head_image = gr.Image(type='pil', label="Head Image") | |
| head_ent = gr.Textbox(lines=1, label="Head Entity") | |
| with gr.Column(): | |
| tail_image = gr.Image(type='pil', label="Tail Image") | |
| tail_ent = gr.Textbox(lines=1, label="Tail Entity") | |
| with gr.Column(): | |
| question_text = gr.Textbox(lines=1, label="Question Name") | |
| question_ent = gr.Textbox(lines=1, label="Question Entity") | |
| submit_btn = gr.Button("Submit") | |
| output_text = gr.Textbox(label="Output") | |
| # examples=[['example01.jpg', MODELS[0], 'best'], ['example02.jpg', MODELS[0], 'best']] | |
| # ex = gr.Examples( | |
| # examples=examples, | |
| # fn=image_to_prompt, | |
| # inputs=[input_image, input_model, input_mode], | |
| # outputs=[output_text, share_button, community_icon, loading_icon], | |
| # cache_examples=True, | |
| # run_on_click=True | |
| # ) | |
| # ex.dataset.headers = [""] | |
| with gr.Tab("Blended Analogical Reasoning"): | |
| pass | |
| # gr.HTML(ARTICLE) | |
| # submit_btn.click( | |
| # fn=image_to_prompt, | |
| # inputs=[input_image, input_model, input_mode], | |
| # outputs=[output_text, share_button, community_icon, loading_icon] | |
| # ) | |
| # share_button.click(None, [], [], _js=None) | |
| block.queue(max_size=64).launch(enable_queue=True) |