Spaces:
Sleeping
Sleeping
Commit
·
80d1a24
1
Parent(s):
2da79c4
Yolo Model
Browse files- app.py +46 -0
- best.pt +3 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import tempfile
|
| 4 |
+
import os
|
| 5 |
+
import subprocess
|
| 6 |
+
import glob
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def process_image(input_img):
|
| 10 |
+
# Create a temporary directory to store the input image
|
| 11 |
+
with tempfile.TemporaryDirectory() as temp_input_dir:
|
| 12 |
+
input_image_path = os.path.join(temp_input_dir, "input.jpg")
|
| 13 |
+
input_img.save(input_image_path)
|
| 14 |
+
|
| 15 |
+
# Create a temporary directory for the output image
|
| 16 |
+
with tempfile.TemporaryDirectory() as temp_output_dir:
|
| 17 |
+
# Command to run the YOLO model
|
| 18 |
+
command = f"yolo task=detect mode=predict model=best.pt conf=0.25 source={temp_input_dir} save=True"
|
| 19 |
+
subprocess.run(command, shell=True)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# Get the most recent 'predict' folder in 'runs/detect'
|
| 23 |
+
list_of_dirs = glob.glob('runs/detect/predict*')
|
| 24 |
+
latest_dir = max(list_of_dirs, key=os.path.getctime)
|
| 25 |
+
|
| 26 |
+
# Assuming YOLO saves the output with the same name in the latest 'predict' folder
|
| 27 |
+
output_image_name = os.path.basename(input_image_path)
|
| 28 |
+
output_image_path = os.path.join(latest_dir, output_image_name)
|
| 29 |
+
|
| 30 |
+
if os.path.exists(output_image_path):
|
| 31 |
+
output_img = Image.open(output_image_path)
|
| 32 |
+
return output_img
|
| 33 |
+
else:
|
| 34 |
+
return "No output image found."
|
| 35 |
+
|
| 36 |
+
# Define the Gradio interface
|
| 37 |
+
demo = gr.Interface(
|
| 38 |
+
fn=process_image,
|
| 39 |
+
inputs=gr.Image(type="pil"),
|
| 40 |
+
outputs=gr.Image(type="pil"),
|
| 41 |
+
title="Object Detection with YOLO",
|
| 42 |
+
description="Upload an image and the YOLO model will detect objects."
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Launch the app
|
| 46 |
+
demo.launch(share=True)
|
best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:299df2cc15fc2b7a9db5a8fe8344658098ecbb0cdbac632c119ad655857d5551
|
| 3 |
+
size 22464291
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
pandas
|
| 3 |
+
ultralytics
|
| 4 |
+
albumentations
|
| 5 |
+
torchvision
|
| 6 |
+
torch
|