TempleX commited on
Commit
f6ad3fd
·
1 Parent(s): 4a88fa2

Update README

Browse files
app.py CHANGED
@@ -5,7 +5,7 @@ import spaces
5
  from diffusers import StableDiffusionXLPipeline
6
  from transformers import AutoFeatureExtractor
7
  from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
8
- from ip_adapter.ip_adapter import EasyRef
9
  from huggingface_hub import hf_hub_download
10
  import gradio as gr
11
  import cv2
 
5
  from diffusers import StableDiffusionXLPipeline
6
  from transformers import AutoFeatureExtractor
7
  from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
8
+ from ip_adapter import EasyRef
9
  from huggingface_hub import hf_hub_download
10
  import gradio as gr
11
  import cv2
ip_adapter/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from .ip_adapter import IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterXL, IPAdapterFull, EasyRef
2
+
3
+ __all__ = [
4
+ "IPAdapter",
5
+ "IPAdapterPlus",
6
+ "IPAdapterPlusXL",
7
+ "IPAdapterXL",
8
+ "IPAdapterFull",
9
+ "EasyRef"
10
+ ]
ip_adapter/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (421 Bytes). View file
 
ip_adapter/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (362 Bytes). View file
 
ip_adapter/__pycache__/attention_processor.cpython-38.pyc ADDED
Binary file (10.1 kB). View file
 
ip_adapter/__pycache__/attention_processor.cpython-39.pyc ADDED
Binary file (10.1 kB). View file
 
ip_adapter/__pycache__/attention_processor_faceid.cpython-38.pyc ADDED
Binary file (8.33 kB). View file
 
ip_adapter/__pycache__/attention_processor_faceid.cpython-39.pyc ADDED
Binary file (8.3 kB). View file
 
ip_adapter/__pycache__/ip_adapter.cpython-38.pyc ADDED
Binary file (21 kB). View file
 
ip_adapter/__pycache__/ip_adapter.cpython-39.pyc ADDED
Binary file (22 kB). View file
 
ip_adapter/__pycache__/resampler.cpython-38.pyc ADDED
Binary file (4.22 kB). View file
 
ip_adapter/__pycache__/resampler.cpython-39.pyc ADDED
Binary file (4.22 kB). View file
 
ip_adapter/__pycache__/utils.cpython-38.pyc ADDED
Binary file (2.83 kB). View file
 
ip_adapter/__pycache__/utils.cpython-39.pyc ADDED
Binary file (2.81 kB). View file
 
ip_adapter/attention_processor.py ADDED
@@ -0,0 +1,568 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+
7
+ class AttnProcessor(nn.Module):
8
+ r"""
9
+ Default processor for performing attention-related computations.
10
+ """
11
+
12
+ def __init__(
13
+ self,
14
+ hidden_size=None,
15
+ cross_attention_dim=None,
16
+ ):
17
+ super().__init__()
18
+
19
+ def __call__(
20
+ self,
21
+ attn,
22
+ hidden_states,
23
+ encoder_hidden_states=None,
24
+ attention_mask=None,
25
+ temb=None,
26
+ *args,
27
+ **kwargs,
28
+ ):
29
+ residual = hidden_states
30
+
31
+ if attn.spatial_norm is not None:
32
+ hidden_states = attn.spatial_norm(hidden_states, temb)
33
+
34
+ input_ndim = hidden_states.ndim
35
+
36
+ if input_ndim == 4:
37
+ batch_size, channel, height, width = hidden_states.shape
38
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
39
+
40
+ batch_size, sequence_length, _ = (
41
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
42
+ )
43
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
44
+
45
+ if attn.group_norm is not None:
46
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
47
+
48
+ query = attn.to_q(hidden_states)
49
+
50
+ if encoder_hidden_states is None:
51
+ encoder_hidden_states = hidden_states
52
+ elif attn.norm_cross:
53
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
54
+
55
+ key = attn.to_k(encoder_hidden_states)
56
+ value = attn.to_v(encoder_hidden_states)
57
+
58
+ query = attn.head_to_batch_dim(query)
59
+ key = attn.head_to_batch_dim(key)
60
+ value = attn.head_to_batch_dim(value)
61
+
62
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
63
+ hidden_states = torch.bmm(attention_probs, value)
64
+ hidden_states = attn.batch_to_head_dim(hidden_states)
65
+
66
+ # linear proj
67
+ hidden_states = attn.to_out[0](hidden_states)
68
+ # dropout
69
+ hidden_states = attn.to_out[1](hidden_states)
70
+
71
+ if input_ndim == 4:
72
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
73
+
74
+ if attn.residual_connection:
75
+ hidden_states = hidden_states + residual
76
+
77
+ hidden_states = hidden_states / attn.rescale_output_factor
78
+
79
+ return hidden_states
80
+
81
+
82
+ class IPAttnProcessor(nn.Module):
83
+ r"""
84
+ Attention processor for IP-Adapater.
85
+ Args:
86
+ hidden_size (`int`):
87
+ The hidden size of the attention layer.
88
+ cross_attention_dim (`int`):
89
+ The number of channels in the `encoder_hidden_states`.
90
+ scale (`float`, defaults to 1.0):
91
+ the weight scale of image prompt.
92
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
93
+ The context length of the image features.
94
+ """
95
+
96
+ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
97
+ super().__init__()
98
+
99
+ self.hidden_size = hidden_size
100
+ self.cross_attention_dim = cross_attention_dim
101
+ self.scale = scale
102
+ self.num_tokens = num_tokens
103
+
104
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
105
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
106
+
107
+ def __call__(
108
+ self,
109
+ attn,
110
+ hidden_states,
111
+ encoder_hidden_states=None,
112
+ attention_mask=None,
113
+ temb=None,
114
+ *args,
115
+ **kwargs,
116
+ ):
117
+ residual = hidden_states
118
+
119
+ if attn.spatial_norm is not None:
120
+ hidden_states = attn.spatial_norm(hidden_states, temb)
121
+
122
+ input_ndim = hidden_states.ndim
123
+
124
+ if input_ndim == 4:
125
+ batch_size, channel, height, width = hidden_states.shape
126
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
127
+
128
+ batch_size, sequence_length, _ = (
129
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
130
+ )
131
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
132
+
133
+ if attn.group_norm is not None:
134
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
135
+
136
+ query = attn.to_q(hidden_states)
137
+
138
+ if encoder_hidden_states is None:
139
+ encoder_hidden_states = hidden_states
140
+ else:
141
+ # get encoder_hidden_states, ip_hidden_states
142
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
143
+ encoder_hidden_states, ip_hidden_states = (
144
+ encoder_hidden_states[:, :end_pos, :],
145
+ encoder_hidden_states[:, end_pos:, :],
146
+ )
147
+ if attn.norm_cross:
148
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
149
+
150
+ key = attn.to_k(encoder_hidden_states)
151
+ value = attn.to_v(encoder_hidden_states)
152
+
153
+ query = attn.head_to_batch_dim(query)
154
+ key = attn.head_to_batch_dim(key)
155
+ value = attn.head_to_batch_dim(value)
156
+
157
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
158
+ hidden_states = torch.bmm(attention_probs, value)
159
+ hidden_states = attn.batch_to_head_dim(hidden_states)
160
+
161
+ # for ip-adapter
162
+ ip_key = self.to_k_ip(ip_hidden_states)
163
+ ip_value = self.to_v_ip(ip_hidden_states)
164
+
165
+ ip_key = attn.head_to_batch_dim(ip_key)
166
+ ip_value = attn.head_to_batch_dim(ip_value)
167
+
168
+ ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
169
+ self.attn_map = ip_attention_probs
170
+ ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
171
+ ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
172
+
173
+ hidden_states = hidden_states + self.scale * ip_hidden_states
174
+
175
+ # linear proj
176
+ hidden_states = attn.to_out[0](hidden_states)
177
+ # dropout
178
+ hidden_states = attn.to_out[1](hidden_states)
179
+
180
+ if input_ndim == 4:
181
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
182
+
183
+ if attn.residual_connection:
184
+ hidden_states = hidden_states + residual
185
+
186
+ hidden_states = hidden_states / attn.rescale_output_factor
187
+
188
+ return hidden_states
189
+
190
+
191
+ class AttnProcessor2_0(torch.nn.Module):
192
+ r"""
193
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
194
+ """
195
+
196
+ def __init__(
197
+ self,
198
+ hidden_size=None,
199
+ cross_attention_dim=None,
200
+ ):
201
+ super().__init__()
202
+ if not hasattr(F, "scaled_dot_product_attention"):
203
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
204
+
205
+ def __call__(
206
+ self,
207
+ attn,
208
+ hidden_states,
209
+ encoder_hidden_states=None,
210
+ attention_mask=None,
211
+ temb=None,
212
+ *args,
213
+ **kwargs,
214
+ ):
215
+ residual = hidden_states
216
+
217
+ if attn.spatial_norm is not None:
218
+ hidden_states = attn.spatial_norm(hidden_states, temb)
219
+
220
+ input_ndim = hidden_states.ndim
221
+
222
+ if input_ndim == 4:
223
+ batch_size, channel, height, width = hidden_states.shape
224
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
225
+
226
+ batch_size, sequence_length, _ = (
227
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
228
+ )
229
+
230
+ if attention_mask is not None:
231
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
232
+ # scaled_dot_product_attention expects attention_mask shape to be
233
+ # (batch, heads, source_length, target_length)
234
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
235
+
236
+ if attn.group_norm is not None:
237
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
238
+
239
+ query = attn.to_q(hidden_states)
240
+
241
+ if encoder_hidden_states is None:
242
+ encoder_hidden_states = hidden_states
243
+ elif attn.norm_cross:
244
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
245
+
246
+ key = attn.to_k(encoder_hidden_states)
247
+ value = attn.to_v(encoder_hidden_states)
248
+
249
+ inner_dim = key.shape[-1]
250
+ head_dim = inner_dim // attn.heads
251
+
252
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
253
+
254
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
255
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
256
+
257
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
258
+ # TODO: add support for attn.scale when we move to Torch 2.1
259
+ hidden_states = F.scaled_dot_product_attention(
260
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
261
+ )
262
+
263
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
264
+ hidden_states = hidden_states.to(query.dtype)
265
+
266
+ # linear proj
267
+ hidden_states = attn.to_out[0](hidden_states)
268
+ # dropout
269
+ hidden_states = attn.to_out[1](hidden_states)
270
+
271
+ if input_ndim == 4:
272
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
273
+
274
+ if attn.residual_connection:
275
+ hidden_states = hidden_states + residual
276
+
277
+ hidden_states = hidden_states / attn.rescale_output_factor
278
+
279
+ return hidden_states
280
+
281
+
282
+ class IPAttnProcessor2_0(torch.nn.Module):
283
+ r"""
284
+ Attention processor for IP-Adapater for PyTorch 2.0.
285
+ Args:
286
+ hidden_size (`int`):
287
+ The hidden size of the attention layer.
288
+ cross_attention_dim (`int`):
289
+ The number of channels in the `encoder_hidden_states`.
290
+ scale (`float`, defaults to 1.0):
291
+ the weight scale of image prompt.
292
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
293
+ The context length of the image features.
294
+ """
295
+
296
+ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
297
+ super().__init__()
298
+
299
+ if not hasattr(F, "scaled_dot_product_attention"):
300
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
301
+
302
+ self.hidden_size = hidden_size
303
+ self.cross_attention_dim = cross_attention_dim
304
+ self.scale = scale
305
+ self.num_tokens = num_tokens
306
+
307
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
308
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
309
+
310
+ def __call__(
311
+ self,
312
+ attn,
313
+ hidden_states,
314
+ encoder_hidden_states=None,
315
+ attention_mask=None,
316
+ temb=None,
317
+ *args,
318
+ **kwargs,
319
+ ):
320
+ residual = hidden_states
321
+
322
+ if attn.spatial_norm is not None:
323
+ hidden_states = attn.spatial_norm(hidden_states, temb)
324
+
325
+ input_ndim = hidden_states.ndim
326
+
327
+ if input_ndim == 4:
328
+ batch_size, channel, height, width = hidden_states.shape
329
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
330
+
331
+ batch_size, sequence_length, _ = (
332
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
333
+ )
334
+
335
+ if attention_mask is not None:
336
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
337
+ # scaled_dot_product_attention expects attention_mask shape to be
338
+ # (batch, heads, source_length, target_length)
339
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
340
+
341
+ if attn.group_norm is not None:
342
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
343
+
344
+ query = attn.to_q(hidden_states)
345
+
346
+ if encoder_hidden_states is None:
347
+ encoder_hidden_states = hidden_states
348
+ else:
349
+ # get encoder_hidden_states, ip_hidden_states
350
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
351
+ encoder_hidden_states, ip_hidden_states = (
352
+ encoder_hidden_states[:, :end_pos, :],
353
+ encoder_hidden_states[:, end_pos:, :],
354
+ )
355
+ if attn.norm_cross:
356
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
357
+
358
+ key = attn.to_k(encoder_hidden_states)
359
+ value = attn.to_v(encoder_hidden_states)
360
+
361
+ inner_dim = key.shape[-1]
362
+ head_dim = inner_dim // attn.heads
363
+
364
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
365
+
366
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
367
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
368
+
369
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
370
+ # TODO: add support for attn.scale when we move to Torch 2.1
371
+ hidden_states = F.scaled_dot_product_attention(
372
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
373
+ )
374
+
375
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
376
+ hidden_states = hidden_states.to(query.dtype)
377
+
378
+ # for ip-adapter
379
+ ip_key = self.to_k_ip(ip_hidden_states)
380
+ ip_value = self.to_v_ip(ip_hidden_states)
381
+
382
+ ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
383
+ ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
384
+
385
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
386
+ # TODO: add support for attn.scale when we move to Torch 2.1
387
+ ip_hidden_states = F.scaled_dot_product_attention(
388
+ query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
389
+ )
390
+ with torch.no_grad():
391
+ self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
392
+ #print(self.attn_map.shape)
393
+
394
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
395
+ ip_hidden_states = ip_hidden_states.to(query.dtype)
396
+
397
+ hidden_states = hidden_states + self.scale * ip_hidden_states
398
+
399
+ # linear proj
400
+ hidden_states = attn.to_out[0](hidden_states)
401
+ # dropout
402
+ hidden_states = attn.to_out[1](hidden_states)
403
+
404
+ if input_ndim == 4:
405
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
406
+
407
+ if attn.residual_connection:
408
+ hidden_states = hidden_states + residual
409
+
410
+ hidden_states = hidden_states / attn.rescale_output_factor
411
+
412
+ return hidden_states
413
+
414
+
415
+ ## for controlnet
416
+ class CNAttnProcessor:
417
+ r"""
418
+ Default processor for performing attention-related computations.
419
+ """
420
+
421
+ def __init__(self, num_tokens=4):
422
+ self.num_tokens = num_tokens
423
+
424
+ def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, *args, **kwargs,):
425
+ residual = hidden_states
426
+
427
+ if attn.spatial_norm is not None:
428
+ hidden_states = attn.spatial_norm(hidden_states, temb)
429
+
430
+ input_ndim = hidden_states.ndim
431
+
432
+ if input_ndim == 4:
433
+ batch_size, channel, height, width = hidden_states.shape
434
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
435
+
436
+ batch_size, sequence_length, _ = (
437
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
438
+ )
439
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
440
+
441
+ if attn.group_norm is not None:
442
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
443
+
444
+ query = attn.to_q(hidden_states)
445
+
446
+ if encoder_hidden_states is None:
447
+ encoder_hidden_states = hidden_states
448
+ else:
449
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
450
+ encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
451
+ if attn.norm_cross:
452
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
453
+
454
+ key = attn.to_k(encoder_hidden_states)
455
+ value = attn.to_v(encoder_hidden_states)
456
+
457
+ query = attn.head_to_batch_dim(query)
458
+ key = attn.head_to_batch_dim(key)
459
+ value = attn.head_to_batch_dim(value)
460
+
461
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
462
+ hidden_states = torch.bmm(attention_probs, value)
463
+ hidden_states = attn.batch_to_head_dim(hidden_states)
464
+
465
+ # linear proj
466
+ hidden_states = attn.to_out[0](hidden_states)
467
+ # dropout
468
+ hidden_states = attn.to_out[1](hidden_states)
469
+
470
+ if input_ndim == 4:
471
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
472
+
473
+ if attn.residual_connection:
474
+ hidden_states = hidden_states + residual
475
+
476
+ hidden_states = hidden_states / attn.rescale_output_factor
477
+
478
+ return hidden_states
479
+
480
+
481
+ class CNAttnProcessor2_0:
482
+ r"""
483
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
484
+ """
485
+
486
+ def __init__(self, num_tokens=4):
487
+ if not hasattr(F, "scaled_dot_product_attention"):
488
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
489
+ self.num_tokens = num_tokens
490
+
491
+ def __call__(
492
+ self,
493
+ attn,
494
+ hidden_states,
495
+ encoder_hidden_states=None,
496
+ attention_mask=None,
497
+ temb=None,
498
+ *args,
499
+ **kwargs,
500
+ ):
501
+ residual = hidden_states
502
+
503
+ if attn.spatial_norm is not None:
504
+ hidden_states = attn.spatial_norm(hidden_states, temb)
505
+
506
+ input_ndim = hidden_states.ndim
507
+
508
+ if input_ndim == 4:
509
+ batch_size, channel, height, width = hidden_states.shape
510
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
511
+
512
+ batch_size, sequence_length, _ = (
513
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
514
+ )
515
+
516
+ if attention_mask is not None:
517
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
518
+ # scaled_dot_product_attention expects attention_mask shape to be
519
+ # (batch, heads, source_length, target_length)
520
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
521
+
522
+ if attn.group_norm is not None:
523
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
524
+
525
+ query = attn.to_q(hidden_states)
526
+
527
+ if encoder_hidden_states is None:
528
+ encoder_hidden_states = hidden_states
529
+ else:
530
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
531
+ encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
532
+ if attn.norm_cross:
533
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
534
+
535
+ key = attn.to_k(encoder_hidden_states)
536
+ value = attn.to_v(encoder_hidden_states)
537
+
538
+ inner_dim = key.shape[-1]
539
+ head_dim = inner_dim // attn.heads
540
+
541
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
542
+
543
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
544
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
545
+
546
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
547
+ # TODO: add support for attn.scale when we move to Torch 2.1
548
+ hidden_states = F.scaled_dot_product_attention(
549
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
550
+ )
551
+
552
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
553
+ hidden_states = hidden_states.to(query.dtype)
554
+
555
+ # linear proj
556
+ hidden_states = attn.to_out[0](hidden_states)
557
+ # dropout
558
+ hidden_states = attn.to_out[1](hidden_states)
559
+
560
+ if input_ndim == 4:
561
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
562
+
563
+ if attn.residual_connection:
564
+ hidden_states = hidden_states + residual
565
+
566
+ hidden_states = hidden_states / attn.rescale_output_factor
567
+
568
+ return hidden_states
ip_adapter/attention_processor_faceid.py ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from diffusers.models.lora import LoRALinearLayer
7
+
8
+
9
+ class LoRAAttnProcessor(nn.Module):
10
+ r"""
11
+ Default processor for performing attention-related computations.
12
+ """
13
+
14
+ def __init__(
15
+ self,
16
+ hidden_size=None,
17
+ cross_attention_dim=None,
18
+ rank=4,
19
+ network_alpha=None,
20
+ lora_scale=1.0,
21
+ ):
22
+ super().__init__()
23
+
24
+ self.rank = rank
25
+ self.lora_scale = lora_scale
26
+
27
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
28
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
29
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
30
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
31
+
32
+ def __call__(
33
+ self,
34
+ attn,
35
+ hidden_states,
36
+ encoder_hidden_states=None,
37
+ attention_mask=None,
38
+ temb=None,
39
+ *args,
40
+ **kwargs,
41
+ ):
42
+ residual = hidden_states
43
+
44
+ if attn.spatial_norm is not None:
45
+ hidden_states = attn.spatial_norm(hidden_states, temb)
46
+
47
+ input_ndim = hidden_states.ndim
48
+
49
+ if input_ndim == 4:
50
+ batch_size, channel, height, width = hidden_states.shape
51
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
52
+
53
+ batch_size, sequence_length, _ = (
54
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
55
+ )
56
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
57
+
58
+ if attn.group_norm is not None:
59
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
60
+
61
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
62
+
63
+ if encoder_hidden_states is None:
64
+ encoder_hidden_states = hidden_states
65
+ elif attn.norm_cross:
66
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
67
+
68
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
69
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
70
+
71
+ query = attn.head_to_batch_dim(query)
72
+ key = attn.head_to_batch_dim(key)
73
+ value = attn.head_to_batch_dim(value)
74
+
75
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
76
+ hidden_states = torch.bmm(attention_probs, value)
77
+ hidden_states = attn.batch_to_head_dim(hidden_states)
78
+
79
+ # linear proj
80
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
81
+ # dropout
82
+ hidden_states = attn.to_out[1](hidden_states)
83
+
84
+ if input_ndim == 4:
85
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
86
+
87
+ if attn.residual_connection:
88
+ hidden_states = hidden_states + residual
89
+
90
+ hidden_states = hidden_states / attn.rescale_output_factor
91
+
92
+ return hidden_states
93
+
94
+
95
+ class LoRAIPAttnProcessor(nn.Module):
96
+ r"""
97
+ Attention processor for IP-Adapater.
98
+ Args:
99
+ hidden_size (`int`):
100
+ The hidden size of the attention layer.
101
+ cross_attention_dim (`int`):
102
+ The number of channels in the `encoder_hidden_states`.
103
+ scale (`float`, defaults to 1.0):
104
+ the weight scale of image prompt.
105
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
106
+ The context length of the image features.
107
+ """
108
+
109
+ def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, lora_scale=1.0, scale=1.0, num_tokens=4):
110
+ super().__init__()
111
+
112
+ self.rank = rank
113
+ self.lora_scale = lora_scale
114
+
115
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
116
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
117
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
118
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
119
+
120
+ self.hidden_size = hidden_size
121
+ self.cross_attention_dim = cross_attention_dim
122
+ self.scale = scale
123
+ self.num_tokens = num_tokens
124
+
125
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
126
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
127
+
128
+ def __call__(
129
+ self,
130
+ attn,
131
+ hidden_states,
132
+ encoder_hidden_states=None,
133
+ attention_mask=None,
134
+ temb=None,
135
+ *args,
136
+ **kwargs,
137
+ ):
138
+ residual = hidden_states
139
+
140
+ if attn.spatial_norm is not None:
141
+ hidden_states = attn.spatial_norm(hidden_states, temb)
142
+
143
+ input_ndim = hidden_states.ndim
144
+
145
+ if input_ndim == 4:
146
+ batch_size, channel, height, width = hidden_states.shape
147
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
148
+
149
+ batch_size, sequence_length, _ = (
150
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
151
+ )
152
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
153
+
154
+ if attn.group_norm is not None:
155
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
156
+
157
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
158
+
159
+ if encoder_hidden_states is None:
160
+ encoder_hidden_states = hidden_states
161
+ else:
162
+ # get encoder_hidden_states, ip_hidden_states
163
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
164
+ encoder_hidden_states, ip_hidden_states = (
165
+ encoder_hidden_states[:, :end_pos, :],
166
+ encoder_hidden_states[:, end_pos:, :],
167
+ )
168
+ if attn.norm_cross:
169
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
170
+
171
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
172
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
173
+
174
+ query = attn.head_to_batch_dim(query)
175
+ key = attn.head_to_batch_dim(key)
176
+ value = attn.head_to_batch_dim(value)
177
+
178
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
179
+ hidden_states = torch.bmm(attention_probs, value)
180
+ hidden_states = attn.batch_to_head_dim(hidden_states)
181
+
182
+ # for ip-adapter
183
+ ip_key = self.to_k_ip(ip_hidden_states)
184
+ ip_value = self.to_v_ip(ip_hidden_states)
185
+
186
+ ip_key = attn.head_to_batch_dim(ip_key)
187
+ ip_value = attn.head_to_batch_dim(ip_value)
188
+
189
+ ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
190
+ self.attn_map = ip_attention_probs
191
+ ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
192
+ ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
193
+
194
+ hidden_states = hidden_states + self.scale * ip_hidden_states
195
+
196
+ # linear proj
197
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
198
+ # dropout
199
+ hidden_states = attn.to_out[1](hidden_states)
200
+
201
+ if input_ndim == 4:
202
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
203
+
204
+ if attn.residual_connection:
205
+ hidden_states = hidden_states + residual
206
+
207
+ hidden_states = hidden_states / attn.rescale_output_factor
208
+
209
+ return hidden_states
210
+
211
+
212
+ class LoRAAttnProcessor2_0(nn.Module):
213
+
214
+ r"""
215
+ Default processor for performing attention-related computations.
216
+ """
217
+
218
+ def __init__(
219
+ self,
220
+ hidden_size=None,
221
+ cross_attention_dim=None,
222
+ rank=4,
223
+ network_alpha=None,
224
+ lora_scale=1.0,
225
+ ):
226
+ super().__init__()
227
+
228
+ self.rank = rank
229
+ self.lora_scale = lora_scale
230
+
231
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
232
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
233
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
234
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
235
+
236
+ def __call__(
237
+ self,
238
+ attn,
239
+ hidden_states,
240
+ encoder_hidden_states=None,
241
+ attention_mask=None,
242
+ temb=None,
243
+ *args,
244
+ **kwargs,
245
+ ):
246
+ residual = hidden_states
247
+
248
+ if attn.spatial_norm is not None:
249
+ hidden_states = attn.spatial_norm(hidden_states, temb)
250
+
251
+ input_ndim = hidden_states.ndim
252
+
253
+ if input_ndim == 4:
254
+ batch_size, channel, height, width = hidden_states.shape
255
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
256
+
257
+ batch_size, sequence_length, _ = (
258
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
259
+ )
260
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
261
+
262
+ if attn.group_norm is not None:
263
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
264
+
265
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
266
+
267
+ if encoder_hidden_states is None:
268
+ encoder_hidden_states = hidden_states
269
+ elif attn.norm_cross:
270
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
271
+
272
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
273
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
274
+
275
+ inner_dim = key.shape[-1]
276
+ head_dim = inner_dim // attn.heads
277
+
278
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
279
+
280
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
281
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
282
+
283
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
284
+ # TODO: add support for attn.scale when we move to Torch 2.1
285
+ hidden_states = F.scaled_dot_product_attention(
286
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
287
+ )
288
+
289
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
290
+ hidden_states = hidden_states.to(query.dtype)
291
+
292
+ # linear proj
293
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
294
+ # dropout
295
+ hidden_states = attn.to_out[1](hidden_states)
296
+
297
+ if input_ndim == 4:
298
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
299
+
300
+ if attn.residual_connection:
301
+ hidden_states = hidden_states + residual
302
+
303
+ hidden_states = hidden_states / attn.rescale_output_factor
304
+
305
+ return hidden_states
306
+
307
+
308
+ class LoRAIPAttnProcessor2_0(nn.Module):
309
+ r"""
310
+ Processor for implementing the LoRA attention mechanism.
311
+
312
+ Args:
313
+ hidden_size (`int`, *optional*):
314
+ The hidden size of the attention layer.
315
+ cross_attention_dim (`int`, *optional*):
316
+ The number of channels in the `encoder_hidden_states`.
317
+ rank (`int`, defaults to 4):
318
+ The dimension of the LoRA update matrices.
319
+ network_alpha (`int`, *optional*):
320
+ Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
321
+ """
322
+
323
+ def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, lora_scale=1.0, scale=1.0, num_tokens=4):
324
+ super().__init__()
325
+
326
+ self.rank = rank
327
+ self.lora_scale = lora_scale
328
+ self.num_tokens = num_tokens
329
+
330
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
331
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
332
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
333
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
334
+
335
+
336
+ self.hidden_size = hidden_size
337
+ self.cross_attention_dim = cross_attention_dim
338
+ self.scale = scale
339
+
340
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
341
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
342
+
343
+ def __call__(
344
+ self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0, temb=None, *args, **kwargs,
345
+ ):
346
+ residual = hidden_states
347
+
348
+ if attn.spatial_norm is not None:
349
+ hidden_states = attn.spatial_norm(hidden_states, temb)
350
+
351
+ input_ndim = hidden_states.ndim
352
+
353
+ if input_ndim == 4:
354
+ batch_size, channel, height, width = hidden_states.shape
355
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
356
+
357
+ batch_size, sequence_length, _ = (
358
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
359
+ )
360
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
361
+
362
+ if attn.group_norm is not None:
363
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
364
+
365
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
366
+ #query = attn.head_to_batch_dim(query)
367
+
368
+ if encoder_hidden_states is None:
369
+ encoder_hidden_states = hidden_states
370
+ else:
371
+ # get encoder_hidden_states, ip_hidden_states
372
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
373
+ encoder_hidden_states, ip_hidden_states = (
374
+ encoder_hidden_states[:, :end_pos, :],
375
+ encoder_hidden_states[:, end_pos:, :],
376
+ )
377
+ if attn.norm_cross:
378
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
379
+
380
+ # for text
381
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
382
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
383
+
384
+ inner_dim = key.shape[-1]
385
+ head_dim = inner_dim // attn.heads
386
+
387
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
388
+
389
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
390
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
391
+
392
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
393
+ # TODO: add support for attn.scale when we move to Torch 2.1
394
+ hidden_states = F.scaled_dot_product_attention(
395
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
396
+ )
397
+
398
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
399
+ hidden_states = hidden_states.to(query.dtype)
400
+
401
+ # for ip
402
+ ip_key = self.to_k_ip(ip_hidden_states)
403
+ ip_value = self.to_v_ip(ip_hidden_states)
404
+
405
+ ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
406
+ ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
407
+
408
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
409
+ # TODO: add support for attn.scale when we move to Torch 2.1
410
+ ip_hidden_states = F.scaled_dot_product_attention(
411
+ query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
412
+ )
413
+
414
+
415
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
416
+ ip_hidden_states = ip_hidden_states.to(query.dtype)
417
+
418
+ hidden_states = hidden_states + self.scale * ip_hidden_states
419
+
420
+ # linear proj
421
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
422
+ # dropout
423
+ hidden_states = attn.to_out[1](hidden_states)
424
+
425
+ if input_ndim == 4:
426
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
427
+
428
+ if attn.residual_connection:
429
+ hidden_states = hidden_states + residual
430
+
431
+ hidden_states = hidden_states / attn.rescale_output_factor
432
+
433
+ return hidden_states
ip_adapter/custom_pipelines.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ from diffusers import StableDiffusionXLPipeline
5
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
6
+ from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
7
+
8
+ from .utils import is_torch2_available
9
+
10
+ if is_torch2_available():
11
+ from .attention_processor import IPAttnProcessor2_0 as IPAttnProcessor
12
+ else:
13
+ from .attention_processor import IPAttnProcessor
14
+
15
+
16
+ class StableDiffusionXLCustomPipeline(StableDiffusionXLPipeline):
17
+ def set_scale(self, scale):
18
+ for attn_processor in self.unet.attn_processors.values():
19
+ if isinstance(attn_processor, IPAttnProcessor):
20
+ attn_processor.scale = scale
21
+
22
+ @torch.no_grad()
23
+ def __call__( # noqa: C901
24
+ self,
25
+ prompt: Optional[Union[str, List[str]]] = None,
26
+ prompt_2: Optional[Union[str, List[str]]] = None,
27
+ height: Optional[int] = None,
28
+ width: Optional[int] = None,
29
+ num_inference_steps: int = 50,
30
+ denoising_end: Optional[float] = None,
31
+ guidance_scale: float = 5.0,
32
+ negative_prompt: Optional[Union[str, List[str]]] = None,
33
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
34
+ num_images_per_prompt: Optional[int] = 1,
35
+ eta: float = 0.0,
36
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
37
+ latents: Optional[torch.FloatTensor] = None,
38
+ prompt_embeds: Optional[torch.FloatTensor] = None,
39
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
40
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
41
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
42
+ output_type: Optional[str] = "pil",
43
+ return_dict: bool = True,
44
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
45
+ callback_steps: int = 1,
46
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
47
+ guidance_rescale: float = 0.0,
48
+ original_size: Optional[Tuple[int, int]] = None,
49
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
50
+ target_size: Optional[Tuple[int, int]] = None,
51
+ negative_original_size: Optional[Tuple[int, int]] = None,
52
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
53
+ negative_target_size: Optional[Tuple[int, int]] = None,
54
+ control_guidance_start: float = 0.0,
55
+ control_guidance_end: float = 1.0,
56
+ ):
57
+ r"""
58
+ Function invoked when calling the pipeline for generation.
59
+
60
+ Args:
61
+ prompt (`str` or `List[str]`, *optional*):
62
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
63
+ instead.
64
+ prompt_2 (`str` or `List[str]`, *optional*):
65
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
66
+ used in both text-encoders
67
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
68
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
69
+ Anything below 512 pixels won't work well for
70
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
71
+ and checkpoints that are not specifically fine-tuned on low resolutions.
72
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
73
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
74
+ Anything below 512 pixels won't work well for
75
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
76
+ and checkpoints that are not specifically fine-tuned on low resolutions.
77
+ num_inference_steps (`int`, *optional*, defaults to 50):
78
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
79
+ expense of slower inference.
80
+ denoising_end (`float`, *optional*):
81
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
82
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
83
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
84
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
85
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
86
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
87
+ guidance_scale (`float`, *optional*, defaults to 5.0):
88
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
89
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
90
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
91
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
92
+ usually at the expense of lower image quality.
93
+ negative_prompt (`str` or `List[str]`, *optional*):
94
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
95
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
96
+ less than `1`).
97
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
98
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
99
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
100
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
101
+ The number of images to generate per prompt.
102
+ eta (`float`, *optional*, defaults to 0.0):
103
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
104
+ [`schedulers.DDIMScheduler`], will be ignored for others.
105
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
106
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
107
+ to make generation deterministic.
108
+ latents (`torch.FloatTensor`, *optional*):
109
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
110
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
111
+ tensor will ge generated by sampling using the supplied random `generator`.
112
+ prompt_embeds (`torch.FloatTensor`, *optional*):
113
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
114
+ provided, text embeddings will be generated from `prompt` input argument.
115
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
116
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
117
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
118
+ argument.
119
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
120
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
121
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
122
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
123
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
124
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
125
+ input argument.
126
+ output_type (`str`, *optional*, defaults to `"pil"`):
127
+ The output format of the generate image. Choose between
128
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
129
+ return_dict (`bool`, *optional*, defaults to `True`):
130
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
131
+ of a plain tuple.
132
+ callback (`Callable`, *optional*):
133
+ A function that will be called every `callback_steps` steps during inference. The function will be
134
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
135
+ callback_steps (`int`, *optional*, defaults to 1):
136
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
137
+ called at every step.
138
+ cross_attention_kwargs (`dict`, *optional*):
139
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
140
+ `self.processor` in
141
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
142
+ guidance_rescale (`float`, *optional*, defaults to 0.7):
143
+ Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
144
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
145
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
146
+ Guidance rescale factor should fix overexposure when using zero terminal SNR.
147
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
148
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
149
+ `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
150
+ explained in section 2.2 of
151
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
152
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
153
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
154
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
155
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
156
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
157
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
158
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
159
+ not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
160
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
161
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
162
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
163
+ micro-conditioning as explained in section 2.2 of
164
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
165
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
166
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
167
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
168
+ micro-conditioning as explained in section 2.2 of
169
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
170
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
171
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
172
+ To negatively condition the generation process based on a target image resolution. It should be as same
173
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
174
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
175
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
176
+ control_guidance_start (`float`, *optional*, defaults to 0.0):
177
+ The percentage of total steps at which the ControlNet starts applying.
178
+ control_guidance_end (`float`, *optional*, defaults to 1.0):
179
+ The percentage of total steps at which the ControlNet stops applying.
180
+
181
+ Examples:
182
+
183
+ Returns:
184
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
185
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
186
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
187
+ """
188
+ # 0. Default height and width to unet
189
+ height = height or self.default_sample_size * self.vae_scale_factor
190
+ width = width or self.default_sample_size * self.vae_scale_factor
191
+
192
+ original_size = original_size or (height, width)
193
+ target_size = target_size or (height, width)
194
+
195
+ # 1. Check inputs. Raise error if not correct
196
+ self.check_inputs(
197
+ prompt,
198
+ prompt_2,
199
+ height,
200
+ width,
201
+ callback_steps,
202
+ negative_prompt,
203
+ negative_prompt_2,
204
+ prompt_embeds,
205
+ negative_prompt_embeds,
206
+ pooled_prompt_embeds,
207
+ negative_pooled_prompt_embeds,
208
+ )
209
+
210
+ # 2. Define call parameters
211
+ if prompt is not None and isinstance(prompt, str):
212
+ batch_size = 1
213
+ elif prompt is not None and isinstance(prompt, list):
214
+ batch_size = len(prompt)
215
+ else:
216
+ batch_size = prompt_embeds.shape[0]
217
+
218
+ device = self._execution_device
219
+
220
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
221
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
222
+ # corresponds to doing no classifier free guidance.
223
+ do_classifier_free_guidance = guidance_scale > 1.0
224
+
225
+ # 3. Encode input prompt
226
+ text_encoder_lora_scale = (
227
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
228
+ )
229
+ (
230
+ prompt_embeds,
231
+ negative_prompt_embeds,
232
+ pooled_prompt_embeds,
233
+ negative_pooled_prompt_embeds,
234
+ ) = self.encode_prompt(
235
+ prompt=prompt,
236
+ prompt_2=prompt_2,
237
+ device=device,
238
+ num_images_per_prompt=num_images_per_prompt,
239
+ do_classifier_free_guidance=do_classifier_free_guidance,
240
+ negative_prompt=negative_prompt,
241
+ negative_prompt_2=negative_prompt_2,
242
+ prompt_embeds=prompt_embeds,
243
+ negative_prompt_embeds=negative_prompt_embeds,
244
+ pooled_prompt_embeds=pooled_prompt_embeds,
245
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
246
+ lora_scale=text_encoder_lora_scale,
247
+ )
248
+
249
+ # 4. Prepare timesteps
250
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
251
+
252
+ timesteps = self.scheduler.timesteps
253
+
254
+ # 5. Prepare latent variables
255
+ num_channels_latents = self.unet.config.in_channels
256
+ latents = self.prepare_latents(
257
+ batch_size * num_images_per_prompt,
258
+ num_channels_latents,
259
+ height,
260
+ width,
261
+ prompt_embeds.dtype,
262
+ device,
263
+ generator,
264
+ latents,
265
+ )
266
+
267
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
268
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
269
+
270
+ # 7. Prepare added time ids & embeddings
271
+ add_text_embeds = pooled_prompt_embeds
272
+ if self.text_encoder_2 is None:
273
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
274
+ else:
275
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
276
+
277
+ add_time_ids = self._get_add_time_ids(
278
+ original_size,
279
+ crops_coords_top_left,
280
+ target_size,
281
+ dtype=prompt_embeds.dtype,
282
+ text_encoder_projection_dim=text_encoder_projection_dim,
283
+ )
284
+ if negative_original_size is not None and negative_target_size is not None:
285
+ negative_add_time_ids = self._get_add_time_ids(
286
+ negative_original_size,
287
+ negative_crops_coords_top_left,
288
+ negative_target_size,
289
+ dtype=prompt_embeds.dtype,
290
+ text_encoder_projection_dim=text_encoder_projection_dim,
291
+ )
292
+ else:
293
+ negative_add_time_ids = add_time_ids
294
+
295
+ if do_classifier_free_guidance:
296
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
297
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
298
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
299
+
300
+ prompt_embeds = prompt_embeds.to(device)
301
+ add_text_embeds = add_text_embeds.to(device)
302
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
303
+
304
+ # 8. Denoising loop
305
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
306
+
307
+ # 7.1 Apply denoising_end
308
+ if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
309
+ discrete_timestep_cutoff = int(
310
+ round(
311
+ self.scheduler.config.num_train_timesteps
312
+ - (denoising_end * self.scheduler.config.num_train_timesteps)
313
+ )
314
+ )
315
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
316
+ timesteps = timesteps[:num_inference_steps]
317
+
318
+ # get init conditioning scale
319
+ for attn_processor in self.unet.attn_processors.values():
320
+ if isinstance(attn_processor, IPAttnProcessor):
321
+ conditioning_scale = attn_processor.scale
322
+ break
323
+
324
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
325
+ for i, t in enumerate(timesteps):
326
+ if (i / len(timesteps) < control_guidance_start) or ((i + 1) / len(timesteps) > control_guidance_end):
327
+ self.set_scale(0.0)
328
+ else:
329
+ self.set_scale(conditioning_scale)
330
+
331
+ # expand the latents if we are doing classifier free guidance
332
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
333
+
334
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
335
+
336
+ # predict the noise residual
337
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
338
+ noise_pred = self.unet(
339
+ latent_model_input,
340
+ t,
341
+ encoder_hidden_states=prompt_embeds,
342
+ cross_attention_kwargs=cross_attention_kwargs,
343
+ added_cond_kwargs=added_cond_kwargs,
344
+ return_dict=False,
345
+ )[0]
346
+
347
+ # perform guidance
348
+ if do_classifier_free_guidance:
349
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
350
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
351
+
352
+ if do_classifier_free_guidance and guidance_rescale > 0.0:
353
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
354
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
355
+
356
+ # compute the previous noisy sample x_t -> x_t-1
357
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
358
+
359
+ # call the callback, if provided
360
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
361
+ progress_bar.update()
362
+ if callback is not None and i % callback_steps == 0:
363
+ callback(i, t, latents)
364
+
365
+ if not output_type == "latent":
366
+ # make sure the VAE is in float32 mode, as it overflows in float16
367
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
368
+
369
+ if needs_upcasting:
370
+ self.upcast_vae()
371
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
372
+
373
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
374
+
375
+ # cast back to fp16 if needed
376
+ if needs_upcasting:
377
+ self.vae.to(dtype=torch.float16)
378
+ else:
379
+ image = latents
380
+
381
+ if output_type != "latent":
382
+ # apply watermark if available
383
+ if self.watermark is not None:
384
+ image = self.watermark.apply_watermark(image)
385
+
386
+ image = self.image_processor.postprocess(image, output_type=output_type)
387
+
388
+ # Offload all models
389
+ self.maybe_free_model_hooks()
390
+
391
+ if not return_dict:
392
+ return (image,)
393
+
394
+ return StableDiffusionXLPipelineOutput(images=image)
ip_adapter/ip_adapter.py ADDED
@@ -0,0 +1,718 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline
6
+ from diffusers.pipelines.controlnet import MultiControlNetModel
7
+ from PIL import Image
8
+ from safetensors import safe_open
9
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10
+ from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
11
+ from qwen_vl_utils import process_vision_info
12
+
13
+ from .utils import is_torch2_available, get_generator
14
+
15
+ if is_torch2_available():
16
+ from .attention_processor import (
17
+ AttnProcessor2_0 as AttnProcessor,
18
+ )
19
+ from .attention_processor import (
20
+ CNAttnProcessor2_0 as CNAttnProcessor,
21
+ )
22
+ from .attention_processor import (
23
+ IPAttnProcessor2_0 as IPAttnProcessor,
24
+ )
25
+ from .attention_processor_faceid import (
26
+ LoRAAttnProcessor2_0 as LoRAAttnProcessor,
27
+ )
28
+ from .attention_processor_faceid import (
29
+ LoRAIPAttnProcessor2_0 as LoRAIPAttnProcessor,
30
+ )
31
+ else:
32
+ from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor
33
+ from .attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor
34
+ from .resampler import Resampler
35
+
36
+
37
+ class ImageProjModel(torch.nn.Module):
38
+ """Projection Model"""
39
+
40
+ def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
41
+ super().__init__()
42
+
43
+ self.generator = None
44
+ self.cross_attention_dim = cross_attention_dim
45
+ self.clip_extra_context_tokens = clip_extra_context_tokens
46
+ self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
47
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
48
+
49
+ def forward(self, image_embeds):
50
+ embeds = image_embeds
51
+ clip_extra_context_tokens = self.proj(embeds).reshape(
52
+ -1, self.clip_extra_context_tokens, self.cross_attention_dim
53
+ )
54
+ clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
55
+ return clip_extra_context_tokens
56
+
57
+
58
+ class MLPProjModel(torch.nn.Module):
59
+ """SD model with image prompt"""
60
+ def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
61
+ super().__init__()
62
+
63
+ self.proj = torch.nn.Sequential(
64
+ torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
65
+ torch.nn.GELU(),
66
+ torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
67
+ torch.nn.LayerNorm(cross_attention_dim)
68
+ )
69
+
70
+ def forward(self, image_embeds):
71
+ clip_extra_context_tokens = self.proj(image_embeds)
72
+ return clip_extra_context_tokens
73
+
74
+
75
+ class IPAdapter:
76
+ def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
77
+ self.device = device
78
+ self.image_encoder_path = image_encoder_path
79
+ self.ip_ckpt = ip_ckpt
80
+ self.num_tokens = num_tokens
81
+
82
+ self.pipe = sd_pipe.to(self.device)
83
+ self.set_ip_adapter()
84
+
85
+ # load image encoder
86
+ self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
87
+ self.device, dtype=torch.float16
88
+ )
89
+ self.clip_image_processor = CLIPImageProcessor()
90
+ # image proj model
91
+ self.image_proj_model = self.init_proj()
92
+
93
+ self.load_ip_adapter()
94
+
95
+ def init_proj(self):
96
+ image_proj_model = ImageProjModel(
97
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
98
+ clip_embeddings_dim=self.image_encoder.config.projection_dim,
99
+ clip_extra_context_tokens=self.num_tokens,
100
+ ).to(self.device, dtype=torch.float16)
101
+ return image_proj_model
102
+
103
+ def set_ip_adapter(self):
104
+ unet = self.pipe.unet
105
+ attn_procs = {}
106
+ for name in unet.attn_processors.keys():
107
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
108
+ if name.startswith("mid_block"):
109
+ hidden_size = unet.config.block_out_channels[-1]
110
+ elif name.startswith("up_blocks"):
111
+ block_id = int(name[len("up_blocks.")])
112
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
113
+ elif name.startswith("down_blocks"):
114
+ block_id = int(name[len("down_blocks.")])
115
+ hidden_size = unet.config.block_out_channels[block_id]
116
+ if cross_attention_dim is None:
117
+ attn_procs[name] = AttnProcessor()
118
+ else:
119
+ attn_procs[name] = IPAttnProcessor(
120
+ hidden_size=hidden_size,
121
+ cross_attention_dim=cross_attention_dim,
122
+ scale=1.0,
123
+ num_tokens=self.num_tokens,
124
+ ).to(self.device, dtype=torch.float16)
125
+ unet.set_attn_processor(attn_procs)
126
+ if hasattr(self.pipe, "controlnet"):
127
+ if isinstance(self.pipe.controlnet, MultiControlNetModel):
128
+ for controlnet in self.pipe.controlnet.nets:
129
+ controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
130
+ else:
131
+ self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
132
+
133
+ def load_ip_adapter(self):
134
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
135
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
136
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
137
+ for key in f.keys():
138
+ if key.startswith("image_proj."):
139
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
140
+ elif key.startswith("ip_adapter."):
141
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
142
+ else:
143
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
144
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
145
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
146
+ ip_layers.load_state_dict(state_dict["ip_adapter"])
147
+
148
+ @torch.inference_mode()
149
+ def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
150
+ if pil_image is not None:
151
+ if isinstance(pil_image, Image.Image):
152
+ pil_image = [pil_image]
153
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
154
+ clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
155
+ else:
156
+ clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
157
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
158
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
159
+ return image_prompt_embeds, uncond_image_prompt_embeds
160
+
161
+ def set_scale(self, scale):
162
+ for attn_processor in self.pipe.unet.attn_processors.values():
163
+ if isinstance(attn_processor, IPAttnProcessor) or isinstance(attn_processor, LoRAIPAttnProcessor):
164
+ attn_processor.scale = scale
165
+
166
+ def generate(
167
+ self,
168
+ pil_image=None,
169
+ clip_image_embeds=None,
170
+ prompt=None,
171
+ negative_prompt=None,
172
+ scale=1.0,
173
+ num_samples=4,
174
+ seed=None,
175
+ guidance_scale=7.5,
176
+ num_inference_steps=30,
177
+ **kwargs,
178
+ ):
179
+ self.set_scale(scale)
180
+
181
+ if pil_image is not None:
182
+ num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
183
+ else:
184
+ num_prompts = clip_image_embeds.size(0)
185
+
186
+ if prompt is None:
187
+ prompt = "best quality, high quality"
188
+ if negative_prompt is None:
189
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
190
+
191
+ if not isinstance(prompt, List):
192
+ prompt = [prompt] * num_prompts
193
+ if not isinstance(negative_prompt, List):
194
+ negative_prompt = [negative_prompt] * num_prompts
195
+
196
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
197
+ pil_image=pil_image, clip_image_embeds=clip_image_embeds
198
+ )
199
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
200
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
201
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
202
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
203
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
204
+
205
+ with torch.inference_mode():
206
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
207
+ prompt,
208
+ device=self.device,
209
+ num_images_per_prompt=num_samples,
210
+ do_classifier_free_guidance=True,
211
+ negative_prompt=negative_prompt,
212
+ )
213
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
214
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
215
+
216
+ generator = get_generator(seed, self.device)
217
+
218
+ images = self.pipe(
219
+ prompt_embeds=prompt_embeds,
220
+ negative_prompt_embeds=negative_prompt_embeds,
221
+ guidance_scale=guidance_scale,
222
+ num_inference_steps=num_inference_steps,
223
+ generator=generator,
224
+ **kwargs,
225
+ ).images
226
+
227
+ return images
228
+
229
+
230
+ class IPAdapterXL(IPAdapter):
231
+ """SDXL"""
232
+
233
+ @torch.inference_mode()
234
+ def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
235
+ if pil_image is not None:
236
+ if isinstance(pil_image, Image.Image):
237
+ pil_image = [pil_image]
238
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
239
+ clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
240
+ else:
241
+ clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
242
+ clip_image_embeds = clip_image_embeds.mean(0, keepdim=True)
243
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
244
+ # if image_prompt_embeds.shape[0] > 1:
245
+ # image_prompt_embeds = image_prompt_embeds.mean(0, keepdim=True)
246
+ # uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds[:1]))
247
+ # else:
248
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
249
+ return image_prompt_embeds, uncond_image_prompt_embeds
250
+
251
+ def generate(
252
+ self,
253
+ pil_image,
254
+ prompt=None,
255
+ negative_prompt=None,
256
+ scale=1.0,
257
+ num_samples=4,
258
+ seed=None,
259
+ num_inference_steps=30,
260
+ **kwargs,
261
+ ):
262
+ self.set_scale(scale)
263
+
264
+ # num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
265
+ num_prompts = 1
266
+
267
+ if prompt is None:
268
+ prompt = "best quality, high quality"
269
+ if negative_prompt is None:
270
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
271
+
272
+ if not isinstance(prompt, List):
273
+ prompt = [prompt] * num_prompts
274
+ if not isinstance(negative_prompt, List):
275
+ negative_prompt = [negative_prompt] * num_prompts
276
+
277
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
278
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
279
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
280
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
281
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
282
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
283
+
284
+ with torch.inference_mode():
285
+ (
286
+ prompt_embeds,
287
+ negative_prompt_embeds,
288
+ pooled_prompt_embeds,
289
+ negative_pooled_prompt_embeds,
290
+ ) = self.pipe.encode_prompt(
291
+ prompt,
292
+ num_images_per_prompt=num_samples,
293
+ do_classifier_free_guidance=True,
294
+ negative_prompt=negative_prompt,
295
+ )
296
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
297
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
298
+
299
+ self.generator = get_generator(seed, self.device)
300
+
301
+ images = self.pipe(
302
+ prompt_embeds=prompt_embeds,
303
+ negative_prompt_embeds=negative_prompt_embeds,
304
+ pooled_prompt_embeds=pooled_prompt_embeds,
305
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
306
+ num_inference_steps=num_inference_steps,
307
+ generator=self.generator,
308
+ **kwargs,
309
+ ).images
310
+
311
+ return images
312
+
313
+
314
+ class IPAdapterPlus(IPAdapter):
315
+ """IP-Adapter with fine-grained features"""
316
+
317
+ def init_proj(self):
318
+ image_proj_model = Resampler(
319
+ dim=self.pipe.unet.config.cross_attention_dim,
320
+ depth=4,
321
+ dim_head=64,
322
+ heads=12,
323
+ num_queries=self.num_tokens,
324
+ embedding_dim=self.image_encoder.config.hidden_size,
325
+ output_dim=self.pipe.unet.config.cross_attention_dim,
326
+ ff_mult=4,
327
+ ).to(self.device, dtype=torch.float16)
328
+ return image_proj_model
329
+
330
+ @torch.inference_mode()
331
+ def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
332
+ if isinstance(pil_image, Image.Image):
333
+ pil_image = [pil_image]
334
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
335
+ clip_image = clip_image.to(self.device, dtype=torch.float16)
336
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
337
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
338
+ uncond_clip_image_embeds = self.image_encoder(
339
+ torch.zeros_like(clip_image), output_hidden_states=True
340
+ ).hidden_states[-2]
341
+ uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
342
+ return image_prompt_embeds, uncond_image_prompt_embeds
343
+
344
+
345
+ class IPAdapterFull(IPAdapterPlus):
346
+ """IP-Adapter with full features"""
347
+
348
+ def init_proj(self):
349
+ image_proj_model = MLPProjModel(
350
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
351
+ clip_embeddings_dim=self.image_encoder.config.hidden_size,
352
+ ).to(self.device, dtype=torch.float16)
353
+ return image_proj_model
354
+
355
+
356
+ class IPAdapterPlusXL(IPAdapter):
357
+ """SDXL"""
358
+
359
+ def init_proj(self):
360
+ image_proj_model = Resampler(
361
+ dim=1280,
362
+ depth=4,
363
+ dim_head=64,
364
+ heads=20,
365
+ num_queries=self.num_tokens,
366
+ embedding_dim=self.image_encoder.config.hidden_size,
367
+ output_dim=self.pipe.unet.config.cross_attention_dim,
368
+ ff_mult=4,
369
+ ).to(self.device, dtype=torch.float16)
370
+ return image_proj_model
371
+
372
+ @torch.inference_mode()
373
+ def get_image_embeds(self, pil_image):
374
+ if isinstance(pil_image, Image.Image):
375
+ pil_image = [pil_image]
376
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
377
+ clip_image = clip_image.to(self.device, dtype=torch.float16)
378
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
379
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
380
+ uncond_clip_image_embeds = self.image_encoder(
381
+ torch.zeros_like(clip_image), output_hidden_states=True
382
+ ).hidden_states[-2]
383
+ uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
384
+ return image_prompt_embeds, uncond_image_prompt_embeds
385
+
386
+ def generate(
387
+ self,
388
+ pil_image,
389
+ prompt=None,
390
+ negative_prompt=None,
391
+ scale=1.0,
392
+ num_samples=4,
393
+ seed=None,
394
+ num_inference_steps=30,
395
+ **kwargs,
396
+ ):
397
+ self.set_scale(scale)
398
+
399
+ num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
400
+
401
+ if prompt is None:
402
+ prompt = "best quality, high quality"
403
+ if negative_prompt is None:
404
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
405
+
406
+ if not isinstance(prompt, List):
407
+ prompt = [prompt] * num_prompts
408
+ if not isinstance(negative_prompt, List):
409
+ negative_prompt = [negative_prompt] * num_prompts
410
+
411
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
412
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
413
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
414
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
415
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
416
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
417
+
418
+ with torch.inference_mode():
419
+ (
420
+ prompt_embeds,
421
+ negative_prompt_embeds,
422
+ pooled_prompt_embeds,
423
+ negative_pooled_prompt_embeds,
424
+ ) = self.pipe.encode_prompt(
425
+ prompt,
426
+ num_images_per_prompt=num_samples,
427
+ do_classifier_free_guidance=True,
428
+ negative_prompt=negative_prompt,
429
+ )
430
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
431
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
432
+
433
+ generator = get_generator(seed, self.device)
434
+
435
+ images = self.pipe(
436
+ prompt_embeds=prompt_embeds,
437
+ negative_prompt_embeds=negative_prompt_embeds,
438
+ pooled_prompt_embeds=pooled_prompt_embeds,
439
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
440
+ num_inference_steps=num_inference_steps,
441
+ generator=generator,
442
+ **kwargs,
443
+ ).images
444
+
445
+ return images
446
+
447
+
448
+ class EasyRef(IPAdapter):
449
+ """EasyRef-SDXL"""
450
+
451
+ def __init__(self, sd_pipe, multimodal_llm_path, ip_ckpt, device, num_tokens=64, use_lora=False, lora_rank=128, cond_image_size=336):
452
+ self.device = device
453
+ self.multimodal_llm_path = multimodal_llm_path
454
+ self.ip_ckpt = ip_ckpt
455
+ self.num_tokens = num_tokens
456
+ self.use_lora = use_lora
457
+ self.lora_rank = lora_rank
458
+
459
+ self.pipe = sd_pipe.to(self.device)
460
+ self.set_ip_adapter()
461
+
462
+ # load image encoder
463
+ mllm_final_layer = Qwen2VLForConditionalGeneration.from_pretrained(
464
+ multimodal_llm_path,
465
+ torch_dtype=torch.bfloat16,
466
+ attn_implementation="sdpa",
467
+ device_map="cuda"
468
+ )
469
+ mllm_final_layer = mllm_final_layer.model
470
+ mllm_final_layer.layers = mllm_final_layer.layers[-1:]
471
+ mllm_final_layer.embed_tokens = torch.nn.Identity()
472
+ mllm_final_layer.visual = torch.nn.Identity()
473
+ mllm_final_layer.lm_head = torch.nn.Identity()
474
+ mllm_final_layer.reference_tokens = torch.nn.Parameter(0.1 * torch.randn(num_tokens, mllm_final_layer.config.hidden_size))
475
+ self.mllm_final_layer = mllm_final_layer.to(self.device)
476
+ for i in range(len(self.mllm_final_layer.layers)):
477
+ self.mllm_final_layer.layers[i].self_attn.is_causal = False
478
+
479
+ multimodal_llm = Qwen2VLForConditionalGeneration.from_pretrained(
480
+ multimodal_llm_path,
481
+ torch_dtype=torch.bfloat16,
482
+ attn_implementation="sdpa",
483
+ device_map="cuda"
484
+ )
485
+ multimodal_llm.model.layers = multimodal_llm.model.layers[:-1]
486
+ multimodal_llm.norm = torch.nn.Identity()
487
+ self.multimodal_llm = multimodal_llm.to(self.device)
488
+
489
+ min_pixels = ((cond_image_size // 28 - 1)**2) * 28 * 28
490
+ max_pixels = ((cond_image_size // 28)**2 + 1) * 28 * 28
491
+ self.image_processor = AutoProcessor.from_pretrained(
492
+ multimodal_llm_path, min_pixels=min_pixels, max_pixels=max_pixels)
493
+ # image proj model
494
+ self.image_proj_model = self.init_proj()
495
+
496
+ self.load_ip_adapter()
497
+
498
+ def load_ip_adapter(self):
499
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
500
+ state_dict = {"image_proj_model": {}, "mllm_final_layer": {}, "unet": {}, "multimodal_llm": {}}
501
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
502
+ for key in f.keys():
503
+ if key.startswith("image_proj_model."):
504
+ state_dict["image_proj_model"][key.replace("image_proj_model.", "")] = f.get_tensor(key)
505
+ elif key.startswith("mllm_final_layer."):
506
+ state_dict["mllm_final_layer"][key.replace("mllm_final_layer.", "")] = f.get_tensor(key)
507
+ elif key.startswith("multimodal_llm."):
508
+ state_dict["multimodal_llm"][key.replace("multimodal_llm.", "")] = f.get_tensor(key)
509
+ elif key.startswith("unet."):
510
+ state_dict["unet"][key.replace("unet.", "")] = f.get_tensor(key)
511
+ else:
512
+ state_dict = {"image_proj_model": {}, "mllm_final_layer": {}, "unet": {}, "multimodal_llm": {}}
513
+ f = torch.load(self.ip_ckpt, map_location="cpu")["module"]
514
+ for key in f.keys():
515
+ if key.startswith("image_proj_model."):
516
+ state_dict["image_proj_model"][key.replace("image_proj_model.", "")] = f[key]
517
+ elif key.startswith("mllm_final_layer."):
518
+ state_dict["mllm_final_layer"][key.replace("mllm_final_layer.", "")] = f[key]
519
+ elif key.startswith("multimodal_llm."):
520
+ state_dict["multimodal_llm"][key.replace("multimodal_llm.", "")] = f[key]
521
+ elif key.startswith("unet."):
522
+ state_dict["unet"][key.replace("unet.", "")] = f[key]
523
+ if len(list(state_dict["multimodal_llm"].keys())) > 0:
524
+ self.multimodal_llm.load_state_dict(state_dict["multimodal_llm"], strict=False)
525
+ self.image_proj_model.load_state_dict(state_dict["image_proj_model"])
526
+ self.mllm_final_layer.load_state_dict(state_dict["mllm_final_layer"])
527
+ unet_state_dict = self.pipe.unet.state_dict()
528
+ unet_state_dict.update(state_dict["unet"])
529
+ self.pipe.unet.load_state_dict(unet_state_dict, strict=False)
530
+ # ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
531
+ # ip_layers.load_state_dict(state_dict["ip_adapter"])
532
+
533
+ def set_ip_adapter(self):
534
+ unet = self.pipe.unet
535
+ attn_procs = {}
536
+ for name in unet.attn_processors.keys():
537
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
538
+ if name.startswith("mid_block"):
539
+ hidden_size = unet.config.block_out_channels[-1]
540
+ elif name.startswith("up_blocks"):
541
+ block_id = int(name[len("up_blocks.")])
542
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
543
+ elif name.startswith("down_blocks"):
544
+ block_id = int(name[len("down_blocks.")])
545
+ hidden_size = unet.config.block_out_channels[block_id]
546
+ if cross_attention_dim is None:
547
+ if self.use_lora:
548
+ attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank).to(self.device, dtype=torch.float16)
549
+ else:
550
+ attn_procs[name] = AttnProcessor().to(self.device, dtype=torch.float16)
551
+ else:
552
+ if self.use_lora:
553
+ attn_procs[name] = LoRAIPAttnProcessor(
554
+ hidden_size=hidden_size,
555
+ cross_attention_dim=cross_attention_dim,
556
+ scale=1.0,
557
+ num_tokens=self.num_tokens,
558
+ rank=self.lora_rank,
559
+ ).to(self.device, dtype=torch.float16)
560
+ else:
561
+ attn_procs[name] = IPAttnProcessor(
562
+ hidden_size=hidden_size,
563
+ cross_attention_dim=cross_attention_dim,
564
+ scale=1.0,
565
+ num_tokens=self.num_tokens,
566
+ ).to(self.device, dtype=torch.float16)
567
+ unet.set_attn_processor(attn_procs)
568
+ if hasattr(self.pipe, "controlnet"):
569
+ if isinstance(self.pipe.controlnet, MultiControlNetModel):
570
+ for controlnet in self.pipe.controlnet.nets:
571
+ controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
572
+ else:
573
+ self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
574
+
575
+ def init_proj(self):
576
+ image_proj_model = MLPProjModel(
577
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
578
+ clip_embeddings_dim=self.multimodal_llm.config.hidden_size,
579
+ ).to(self.device, dtype=torch.bfloat16)
580
+ return image_proj_model
581
+
582
+ @torch.inference_mode()
583
+ def get_image_embeds(self, pil_image, system_prompt):
584
+ if isinstance(pil_image, Image.Image):
585
+ pil_image = [pil_image]
586
+ data = []
587
+ messages = [
588
+ {
589
+ "role": "user",
590
+ "content": [],
591
+ }
592
+ ]
593
+ for image in pil_image:
594
+ messages[0]["content"].append({"type": "image", "image": image})
595
+ messages[0]["content"].append({"type": "text", "text": system_prompt})
596
+ prompt = self.image_processor.apply_chat_template(
597
+ messages, tokenize=False, add_generation_prompt=True
598
+ )
599
+ image_inputs, video_inputs = process_vision_info(messages)
600
+ inputs = self.image_processor(
601
+ text=[prompt],
602
+ images=image_inputs,
603
+ videos=video_inputs,
604
+ padding=True,
605
+ return_tensors="pt",
606
+ )
607
+ data.append(inputs)
608
+ input_ids = torch.stack([example["input_ids"] for example in data], dim=0).to(self.device)
609
+ attention_mask = torch.cat([example["attention_mask"] for example in data], dim=0).to(self.device)
610
+ pixel_values = [example["pixel_values"] for example in data]
611
+ image_grid_thw = torch.stack([example["image_grid_thw"] for example in data], dim=0).to(self.device)
612
+
613
+ with torch.no_grad():
614
+ inputs_embeds = self.multimodal_llm.model.embed_tokens(input_ids)
615
+ new_inputs_embeds = []
616
+ for i in range(len(pixel_values)):
617
+ pixel_value = pixel_values[i].type(self.multimodal_llm.visual.get_dtype()).to(inputs_embeds.device)
618
+ grid_thw = image_grid_thw[i]
619
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
620
+ dim=0, dtype=torch.int32
621
+ )
622
+ cu_seqlens = torch.nn.functional.pad(cu_seqlens, (1, 0), value=0)
623
+ image_embeds = []
624
+ for j in range(1, len(cu_seqlens)):
625
+ image_embed = self.multimodal_llm.visual(pixel_value[cu_seqlens[j - 1] : cu_seqlens[j]], grid_thw=grid_thw[(j - 1) : j]).to(inputs_embeds.device)
626
+ image_embeds.append(image_embed)
627
+ image_embeds = torch.cat(image_embeds, dim=0)
628
+ image_mask = input_ids[i] == self.multimodal_llm.config.image_token_id
629
+ inputs_embed = inputs_embeds[i].clone()
630
+ inputs_embed[image_mask] = image_embeds
631
+ new_inputs_embeds.append(inputs_embed)
632
+ inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
633
+ image_embeds = self.multimodal_llm(
634
+ attention_mask=attention_mask,
635
+ inputs_embeds=inputs_embeds,
636
+ output_hidden_states=True
637
+ ).hidden_states[-1]
638
+
639
+ reference_tokens = self.mllm_final_layer.reference_tokens.to(self.device)
640
+ image_embeds = torch.cat([image_embeds, reference_tokens.unsqueeze(0).repeat(image_embeds.shape[0], 1, 1)], dim=1).to(dtype=torch.bfloat16)
641
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, :reference_tokens.shape[0]])], dim=1)
642
+ outputs = self.mllm_final_layer(
643
+ attention_mask=attention_mask.to(self.device),
644
+ inputs_embeds=image_embeds.to(self.device),
645
+ output_hidden_states=True,
646
+ )
647
+ image_embeds = outputs.hidden_states[-1]
648
+ image_embeds_ = []
649
+ for image_embed in image_embeds:
650
+ new_image_embed = image_embed[-reference_tokens.shape[0]:]
651
+ image_embeds_.append(new_image_embed)
652
+ image_prompt_embeds = self.image_proj_model(torch.stack(image_embeds_)).to(dtype=torch.float16)
653
+ return image_prompt_embeds
654
+
655
+ def generate(
656
+ self,
657
+ pil_image,
658
+ system_prompt,
659
+ prompt=None,
660
+ negative_prompt=None,
661
+ scale=1.0,
662
+ num_samples=4,
663
+ seed=None,
664
+ num_inference_steps=30,
665
+ **kwargs,
666
+ ):
667
+ self.set_scale(scale)
668
+
669
+ # num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
670
+ num_prompts = 1
671
+
672
+ if prompt is None:
673
+ prompt = "best quality, high quality"
674
+ if negative_prompt is None:
675
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
676
+
677
+ if not isinstance(prompt, List):
678
+ prompt = [prompt] * num_prompts
679
+ if not isinstance(negative_prompt, List):
680
+ negative_prompt = [negative_prompt] * num_prompts
681
+
682
+ # image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
683
+ image_prompt_embeds = self.get_image_embeds(pil_image, system_prompt[0])
684
+ uncond_image_prompt_embeds = self.get_image_embeds(Image.new(mode="RGB", size=(int(512), int(512))), system_prompt[1])
685
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
686
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
687
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
688
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
689
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
690
+
691
+ with torch.inference_mode():
692
+ (
693
+ prompt_embeds,
694
+ negative_prompt_embeds,
695
+ pooled_prompt_embeds,
696
+ negative_pooled_prompt_embeds,
697
+ ) = self.pipe.encode_prompt(
698
+ prompt,
699
+ num_images_per_prompt=num_samples,
700
+ do_classifier_free_guidance=True,
701
+ negative_prompt=negative_prompt,
702
+ )
703
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
704
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
705
+
706
+ generator = get_generator(seed, self.device)
707
+
708
+ images = self.pipe(
709
+ prompt_embeds=prompt_embeds,
710
+ negative_prompt_embeds=negative_prompt_embeds,
711
+ pooled_prompt_embeds=pooled_prompt_embeds,
712
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
713
+ num_inference_steps=num_inference_steps,
714
+ generator=generator,
715
+ **kwargs,
716
+ ).images
717
+
718
+ return images
ip_adapter/ip_adapter_faceid.py ADDED
@@ -0,0 +1,542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline
6
+ from diffusers.pipelines.controlnet import MultiControlNetModel
7
+ from PIL import Image
8
+ from safetensors import safe_open
9
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10
+
11
+ from .attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor
12
+ from .utils import is_torch2_available, get_generator
13
+
14
+ USE_DAFAULT_ATTN = False # should be True for visualization_attnmap
15
+ if is_torch2_available() and (not USE_DAFAULT_ATTN):
16
+ from .attention_processor_faceid import (
17
+ LoRAAttnProcessor2_0 as LoRAAttnProcessor,
18
+ )
19
+ from .attention_processor_faceid import (
20
+ LoRAIPAttnProcessor2_0 as LoRAIPAttnProcessor,
21
+ )
22
+ else:
23
+ from .attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor
24
+ from .resampler import PerceiverAttention, FeedForward
25
+
26
+
27
+ class FacePerceiverResampler(torch.nn.Module):
28
+ def __init__(
29
+ self,
30
+ *,
31
+ dim=768,
32
+ depth=4,
33
+ dim_head=64,
34
+ heads=16,
35
+ embedding_dim=1280,
36
+ output_dim=768,
37
+ ff_mult=4,
38
+ ):
39
+ super().__init__()
40
+
41
+ self.proj_in = torch.nn.Linear(embedding_dim, dim)
42
+ self.proj_out = torch.nn.Linear(dim, output_dim)
43
+ self.norm_out = torch.nn.LayerNorm(output_dim)
44
+ self.layers = torch.nn.ModuleList([])
45
+ for _ in range(depth):
46
+ self.layers.append(
47
+ torch.nn.ModuleList(
48
+ [
49
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
50
+ FeedForward(dim=dim, mult=ff_mult),
51
+ ]
52
+ )
53
+ )
54
+
55
+ def forward(self, latents, x):
56
+ x = self.proj_in(x)
57
+ for attn, ff in self.layers:
58
+ latents = attn(x, latents) + latents
59
+ latents = ff(latents) + latents
60
+ latents = self.proj_out(latents)
61
+ return self.norm_out(latents)
62
+
63
+
64
+ class MLPProjModel(torch.nn.Module):
65
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
66
+ super().__init__()
67
+
68
+ self.cross_attention_dim = cross_attention_dim
69
+ self.num_tokens = num_tokens
70
+
71
+ self.proj = torch.nn.Sequential(
72
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
73
+ torch.nn.GELU(),
74
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
75
+ )
76
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
77
+
78
+ def forward(self, id_embeds):
79
+ x = self.proj(id_embeds)
80
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
81
+ x = self.norm(x)
82
+ return x
83
+
84
+
85
+ class ProjPlusModel(torch.nn.Module):
86
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4):
87
+ super().__init__()
88
+
89
+ self.cross_attention_dim = cross_attention_dim
90
+ self.num_tokens = num_tokens
91
+
92
+ self.proj = torch.nn.Sequential(
93
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
94
+ torch.nn.GELU(),
95
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
96
+ )
97
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
98
+
99
+ self.perceiver_resampler = FacePerceiverResampler(
100
+ dim=cross_attention_dim,
101
+ depth=4,
102
+ dim_head=64,
103
+ heads=cross_attention_dim // 64,
104
+ embedding_dim=clip_embeddings_dim,
105
+ output_dim=cross_attention_dim,
106
+ ff_mult=4,
107
+ )
108
+
109
+ def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0):
110
+
111
+ x = self.proj(id_embeds)
112
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
113
+ x = self.norm(x)
114
+ out = self.perceiver_resampler(x, clip_embeds)
115
+ if shortcut:
116
+ out = x + scale * out
117
+ return out
118
+
119
+
120
+ class IPAdapterFaceID:
121
+ def __init__(self, sd_pipe, ip_ckpt, device, lora_rank=128, num_tokens=4, torch_dtype=torch.float16):
122
+ self.device = device
123
+ self.ip_ckpt = ip_ckpt
124
+ self.lora_rank = lora_rank
125
+ self.num_tokens = num_tokens
126
+ self.torch_dtype = torch_dtype
127
+
128
+ self.pipe = sd_pipe.to(self.device)
129
+ self.set_ip_adapter()
130
+
131
+ # image proj model
132
+ self.image_proj_model = self.init_proj()
133
+
134
+ self.load_ip_adapter()
135
+
136
+ def init_proj(self):
137
+ image_proj_model = MLPProjModel(
138
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
139
+ id_embeddings_dim=512,
140
+ num_tokens=self.num_tokens,
141
+ ).to(self.device, dtype=self.torch_dtype)
142
+ return image_proj_model
143
+
144
+ def set_ip_adapter(self):
145
+ unet = self.pipe.unet
146
+ attn_procs = {}
147
+ for name in unet.attn_processors.keys():
148
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
149
+ if name.startswith("mid_block"):
150
+ hidden_size = unet.config.block_out_channels[-1]
151
+ elif name.startswith("up_blocks"):
152
+ block_id = int(name[len("up_blocks.")])
153
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
154
+ elif name.startswith("down_blocks"):
155
+ block_id = int(name[len("down_blocks.")])
156
+ hidden_size = unet.config.block_out_channels[block_id]
157
+ if cross_attention_dim is None:
158
+ attn_procs[name] = LoRAAttnProcessor(
159
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
160
+ ).to(self.device, dtype=self.torch_dtype)
161
+ else:
162
+ attn_procs[name] = LoRAIPAttnProcessor(
163
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
164
+ ).to(self.device, dtype=self.torch_dtype)
165
+ unet.set_attn_processor(attn_procs)
166
+
167
+ def load_ip_adapter(self):
168
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
169
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
170
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
171
+ for key in f.keys():
172
+ if key.startswith("image_proj."):
173
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
174
+ elif key.startswith("ip_adapter."):
175
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
176
+ else:
177
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
178
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
179
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
180
+ ip_layers.load_state_dict(state_dict["ip_adapter"])
181
+
182
+ @torch.inference_mode()
183
+ def get_image_embeds(self, faceid_embeds):
184
+
185
+ faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
186
+ image_prompt_embeds = self.image_proj_model(faceid_embeds)
187
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds))
188
+ return image_prompt_embeds, uncond_image_prompt_embeds
189
+
190
+ def set_scale(self, scale):
191
+ for attn_processor in self.pipe.unet.attn_processors.values():
192
+ if isinstance(attn_processor, LoRAIPAttnProcessor):
193
+ attn_processor.scale = scale
194
+
195
+ def generate(
196
+ self,
197
+ faceid_embeds=None,
198
+ prompt=None,
199
+ negative_prompt=None,
200
+ scale=1.0,
201
+ num_samples=4,
202
+ seed=None,
203
+ guidance_scale=7.5,
204
+ num_inference_steps=30,
205
+ **kwargs,
206
+ ):
207
+ self.set_scale(scale)
208
+
209
+
210
+ num_prompts = faceid_embeds.size(0)
211
+
212
+ if prompt is None:
213
+ prompt = "best quality, high quality"
214
+ if negative_prompt is None:
215
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
216
+
217
+ if not isinstance(prompt, List):
218
+ prompt = [prompt] * num_prompts
219
+ if not isinstance(negative_prompt, List):
220
+ negative_prompt = [negative_prompt] * num_prompts
221
+
222
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
223
+
224
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
225
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
226
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
227
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
228
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
229
+
230
+ with torch.inference_mode():
231
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
232
+ prompt,
233
+ device=self.device,
234
+ num_images_per_prompt=num_samples,
235
+ do_classifier_free_guidance=True,
236
+ negative_prompt=negative_prompt,
237
+ )
238
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
239
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
240
+
241
+ generator = get_generator(seed, self.device)
242
+
243
+ images = self.pipe(
244
+ prompt_embeds=prompt_embeds,
245
+ negative_prompt_embeds=negative_prompt_embeds,
246
+ guidance_scale=guidance_scale,
247
+ num_inference_steps=num_inference_steps,
248
+ generator=generator,
249
+ **kwargs,
250
+ ).images
251
+
252
+ return images
253
+
254
+
255
+ class IPAdapterFaceIDPlus:
256
+ def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, lora_rank=128, num_tokens=4, torch_dtype=torch.float16):
257
+ self.device = device
258
+ self.image_encoder_path = image_encoder_path
259
+ self.ip_ckpt = ip_ckpt
260
+ self.lora_rank = lora_rank
261
+ self.num_tokens = num_tokens
262
+ self.torch_dtype = torch_dtype
263
+
264
+ self.pipe = sd_pipe.to(self.device)
265
+ self.set_ip_adapter()
266
+
267
+ # load image encoder
268
+ self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
269
+ self.device, dtype=self.torch_dtype
270
+ )
271
+ self.clip_image_processor = CLIPImageProcessor()
272
+ # image proj model
273
+ self.image_proj_model = self.init_proj()
274
+
275
+ self.load_ip_adapter()
276
+
277
+ def init_proj(self):
278
+ image_proj_model = ProjPlusModel(
279
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
280
+ id_embeddings_dim=512,
281
+ clip_embeddings_dim=self.image_encoder.config.hidden_size,
282
+ num_tokens=self.num_tokens,
283
+ ).to(self.device, dtype=self.torch_dtype)
284
+ return image_proj_model
285
+
286
+ def set_ip_adapter(self):
287
+ unet = self.pipe.unet
288
+ attn_procs = {}
289
+ for name in unet.attn_processors.keys():
290
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
291
+ if name.startswith("mid_block"):
292
+ hidden_size = unet.config.block_out_channels[-1]
293
+ elif name.startswith("up_blocks"):
294
+ block_id = int(name[len("up_blocks.")])
295
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
296
+ elif name.startswith("down_blocks"):
297
+ block_id = int(name[len("down_blocks.")])
298
+ hidden_size = unet.config.block_out_channels[block_id]
299
+ if cross_attention_dim is None:
300
+ attn_procs[name] = LoRAAttnProcessor(
301
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
302
+ ).to(self.device, dtype=self.torch_dtype)
303
+ else:
304
+ attn_procs[name] = LoRAIPAttnProcessor(
305
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
306
+ ).to(self.device, dtype=self.torch_dtype)
307
+ unet.set_attn_processor(attn_procs)
308
+
309
+ def load_ip_adapter(self):
310
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
311
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
312
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
313
+ for key in f.keys():
314
+ if key.startswith("image_proj."):
315
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
316
+ elif key.startswith("ip_adapter."):
317
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
318
+ else:
319
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
320
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
321
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
322
+ ip_layers.load_state_dict(state_dict["ip_adapter"])
323
+
324
+ @torch.inference_mode()
325
+ def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut):
326
+ if isinstance(face_image, Image.Image):
327
+ pil_image = [face_image]
328
+ clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
329
+ clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
330
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
331
+ uncond_clip_image_embeds = self.image_encoder(
332
+ torch.zeros_like(clip_image), output_hidden_states=True
333
+ ).hidden_states[-2]
334
+
335
+ faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
336
+ image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
337
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
338
+ return image_prompt_embeds, uncond_image_prompt_embeds
339
+
340
+ def set_scale(self, scale):
341
+ for attn_processor in self.pipe.unet.attn_processors.values():
342
+ if isinstance(attn_processor, LoRAIPAttnProcessor):
343
+ attn_processor.scale = scale
344
+
345
+ def generate(
346
+ self,
347
+ face_image=None,
348
+ faceid_embeds=None,
349
+ prompt=None,
350
+ negative_prompt=None,
351
+ scale=1.0,
352
+ num_samples=4,
353
+ seed=None,
354
+ guidance_scale=7.5,
355
+ num_inference_steps=30,
356
+ s_scale=1.0,
357
+ shortcut=False,
358
+ **kwargs,
359
+ ):
360
+ self.set_scale(scale)
361
+
362
+
363
+ num_prompts = faceid_embeds.size(0)
364
+
365
+ if prompt is None:
366
+ prompt = "best quality, high quality"
367
+ if negative_prompt is None:
368
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
369
+
370
+ if not isinstance(prompt, List):
371
+ prompt = [prompt] * num_prompts
372
+ if not isinstance(negative_prompt, List):
373
+ negative_prompt = [negative_prompt] * num_prompts
374
+
375
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
376
+
377
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
378
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
379
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
380
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
381
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
382
+
383
+ with torch.inference_mode():
384
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
385
+ prompt,
386
+ device=self.device,
387
+ num_images_per_prompt=num_samples,
388
+ do_classifier_free_guidance=True,
389
+ negative_prompt=negative_prompt,
390
+ )
391
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
392
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
393
+
394
+ generator = get_generator(seed, self.device)
395
+
396
+ images = self.pipe(
397
+ prompt_embeds=prompt_embeds,
398
+ negative_prompt_embeds=negative_prompt_embeds,
399
+ guidance_scale=guidance_scale,
400
+ num_inference_steps=num_inference_steps,
401
+ generator=generator,
402
+ **kwargs,
403
+ ).images
404
+
405
+ return images
406
+
407
+
408
+ class IPAdapterFaceIDXL(IPAdapterFaceID):
409
+ """SDXL"""
410
+
411
+ def generate(
412
+ self,
413
+ faceid_embeds=None,
414
+ prompt=None,
415
+ negative_prompt=None,
416
+ scale=1.0,
417
+ num_samples=4,
418
+ seed=None,
419
+ num_inference_steps=30,
420
+ **kwargs,
421
+ ):
422
+ self.set_scale(scale)
423
+
424
+ num_prompts = faceid_embeds.size(0)
425
+
426
+ if prompt is None:
427
+ prompt = "best quality, high quality"
428
+ if negative_prompt is None:
429
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
430
+
431
+ if not isinstance(prompt, List):
432
+ prompt = [prompt] * num_prompts
433
+ if not isinstance(negative_prompt, List):
434
+ negative_prompt = [negative_prompt] * num_prompts
435
+
436
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
437
+
438
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
439
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
440
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
441
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
442
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
443
+
444
+ with torch.inference_mode():
445
+ (
446
+ prompt_embeds,
447
+ negative_prompt_embeds,
448
+ pooled_prompt_embeds,
449
+ negative_pooled_prompt_embeds,
450
+ ) = self.pipe.encode_prompt(
451
+ prompt,
452
+ num_images_per_prompt=num_samples,
453
+ do_classifier_free_guidance=True,
454
+ negative_prompt=negative_prompt,
455
+ )
456
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
457
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
458
+
459
+ generator = get_generator(seed, self.device)
460
+
461
+ images = self.pipe(
462
+ prompt_embeds=prompt_embeds,
463
+ negative_prompt_embeds=negative_prompt_embeds,
464
+ pooled_prompt_embeds=pooled_prompt_embeds,
465
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
466
+ num_inference_steps=num_inference_steps,
467
+ generator=generator,
468
+ **kwargs,
469
+ ).images
470
+
471
+ return images
472
+
473
+
474
+ class IPAdapterFaceIDPlusXL(IPAdapterFaceIDPlus):
475
+ """SDXL"""
476
+
477
+ def generate(
478
+ self,
479
+ face_image=None,
480
+ faceid_embeds=None,
481
+ prompt=None,
482
+ negative_prompt=None,
483
+ scale=1.0,
484
+ num_samples=4,
485
+ seed=None,
486
+ guidance_scale=7.5,
487
+ num_inference_steps=30,
488
+ s_scale=1.0,
489
+ shortcut=True,
490
+ **kwargs,
491
+ ):
492
+ self.set_scale(scale)
493
+
494
+ num_prompts = faceid_embeds.size(0)
495
+
496
+ if prompt is None:
497
+ prompt = "best quality, high quality"
498
+ if negative_prompt is None:
499
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
500
+
501
+ if not isinstance(prompt, List):
502
+ prompt = [prompt] * num_prompts
503
+ if not isinstance(negative_prompt, List):
504
+ negative_prompt = [negative_prompt] * num_prompts
505
+
506
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
507
+
508
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
509
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
510
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
511
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
512
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
513
+
514
+ with torch.inference_mode():
515
+ (
516
+ prompt_embeds,
517
+ negative_prompt_embeds,
518
+ pooled_prompt_embeds,
519
+ negative_pooled_prompt_embeds,
520
+ ) = self.pipe.encode_prompt(
521
+ prompt,
522
+ num_images_per_prompt=num_samples,
523
+ do_classifier_free_guidance=True,
524
+ negative_prompt=negative_prompt,
525
+ )
526
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
527
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
528
+
529
+ generator = get_generator(seed, self.device)
530
+
531
+ images = self.pipe(
532
+ prompt_embeds=prompt_embeds,
533
+ negative_prompt_embeds=negative_prompt_embeds,
534
+ pooled_prompt_embeds=pooled_prompt_embeds,
535
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
536
+ num_inference_steps=num_inference_steps,
537
+ generator=generator,
538
+ guidance_scale=guidance_scale,
539
+ **kwargs,
540
+ ).images
541
+
542
+ return images
ip_adapter/ip_adapter_faceid_separate.py ADDED
@@ -0,0 +1,556 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline
6
+ from diffusers.pipelines.controlnet import MultiControlNetModel
7
+ from PIL import Image
8
+ from safetensors import safe_open
9
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10
+
11
+ from .utils import is_torch2_available, get_generator
12
+
13
+ USE_DAFAULT_ATTN = False # should be True for visualization_attnmap
14
+ if is_torch2_available() and (not USE_DAFAULT_ATTN):
15
+ from .attention_processor import (
16
+ AttnProcessor2_0 as AttnProcessor,
17
+ )
18
+ from .attention_processor import (
19
+ IPAttnProcessor2_0 as IPAttnProcessor,
20
+ )
21
+ else:
22
+ from .attention_processor import AttnProcessor, IPAttnProcessor
23
+ from .resampler import PerceiverAttention, FeedForward
24
+
25
+
26
+ class FacePerceiverResampler(torch.nn.Module):
27
+ def __init__(
28
+ self,
29
+ *,
30
+ dim=768,
31
+ depth=4,
32
+ dim_head=64,
33
+ heads=16,
34
+ embedding_dim=1280,
35
+ output_dim=768,
36
+ ff_mult=4,
37
+ ):
38
+ super().__init__()
39
+
40
+ self.proj_in = torch.nn.Linear(embedding_dim, dim)
41
+ self.proj_out = torch.nn.Linear(dim, output_dim)
42
+ self.norm_out = torch.nn.LayerNorm(output_dim)
43
+ self.layers = torch.nn.ModuleList([])
44
+ for _ in range(depth):
45
+ self.layers.append(
46
+ torch.nn.ModuleList(
47
+ [
48
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
49
+ FeedForward(dim=dim, mult=ff_mult),
50
+ ]
51
+ )
52
+ )
53
+
54
+ def forward(self, latents, x):
55
+ x = self.proj_in(x)
56
+ for attn, ff in self.layers:
57
+ latents = attn(x, latents) + latents
58
+ latents = ff(latents) + latents
59
+ latents = self.proj_out(latents)
60
+ return self.norm_out(latents)
61
+
62
+
63
+ class MLPProjModel(torch.nn.Module):
64
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
65
+ super().__init__()
66
+
67
+ self.cross_attention_dim = cross_attention_dim
68
+ self.num_tokens = num_tokens
69
+
70
+ self.proj = torch.nn.Sequential(
71
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
72
+ torch.nn.GELU(),
73
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
74
+ )
75
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
76
+
77
+ def forward(self, id_embeds):
78
+ x = self.proj(id_embeds)
79
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
80
+ x = self.norm(x)
81
+ return x
82
+
83
+
84
+ class ProjPlusModel(torch.nn.Module):
85
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4):
86
+ super().__init__()
87
+
88
+ self.cross_attention_dim = cross_attention_dim
89
+ self.num_tokens = num_tokens
90
+
91
+ self.proj = torch.nn.Sequential(
92
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
93
+ torch.nn.GELU(),
94
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
95
+ )
96
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
97
+
98
+ self.perceiver_resampler = FacePerceiverResampler(
99
+ dim=cross_attention_dim,
100
+ depth=4,
101
+ dim_head=64,
102
+ heads=cross_attention_dim // 64,
103
+ embedding_dim=clip_embeddings_dim,
104
+ output_dim=cross_attention_dim,
105
+ ff_mult=4,
106
+ )
107
+
108
+ def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0):
109
+
110
+ x = self.proj(id_embeds)
111
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
112
+ x = self.norm(x)
113
+ out = self.perceiver_resampler(x, clip_embeds)
114
+ if shortcut:
115
+ out = x + scale * out
116
+ return out
117
+
118
+
119
+ class IPAdapterFaceID:
120
+ def __init__(self, sd_pipe, ip_ckpt, device, num_tokens=4, n_cond=1, torch_dtype=torch.float16):
121
+ self.device = device
122
+ self.ip_ckpt = ip_ckpt
123
+ self.num_tokens = num_tokens
124
+ self.n_cond = n_cond
125
+ self.torch_dtype = torch_dtype
126
+
127
+ self.pipe = sd_pipe.to(self.device)
128
+ self.set_ip_adapter()
129
+
130
+ # image proj model
131
+ self.image_proj_model = self.init_proj()
132
+
133
+ self.load_ip_adapter()
134
+
135
+ def init_proj(self):
136
+ image_proj_model = MLPProjModel(
137
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
138
+ id_embeddings_dim=512,
139
+ num_tokens=self.num_tokens,
140
+ ).to(self.device, dtype=self.torch_dtype)
141
+ return image_proj_model
142
+
143
+ def set_ip_adapter(self):
144
+ unet = self.pipe.unet
145
+ attn_procs = {}
146
+ for name in unet.attn_processors.keys():
147
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
148
+ if name.startswith("mid_block"):
149
+ hidden_size = unet.config.block_out_channels[-1]
150
+ elif name.startswith("up_blocks"):
151
+ block_id = int(name[len("up_blocks.")])
152
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
153
+ elif name.startswith("down_blocks"):
154
+ block_id = int(name[len("down_blocks.")])
155
+ hidden_size = unet.config.block_out_channels[block_id]
156
+ if cross_attention_dim is None:
157
+ attn_procs[name] = AttnProcessor()
158
+ else:
159
+ attn_procs[name] = IPAttnProcessor(
160
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=self.num_tokens*self.n_cond,
161
+ ).to(self.device, dtype=self.torch_dtype)
162
+ unet.set_attn_processor(attn_procs)
163
+
164
+ def load_ip_adapter(self):
165
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
166
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
167
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
168
+ for key in f.keys():
169
+ if key.startswith("image_proj."):
170
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
171
+ elif key.startswith("ip_adapter."):
172
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
173
+ else:
174
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
175
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
176
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
177
+ ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
178
+
179
+ @torch.inference_mode()
180
+ def get_image_embeds(self, faceid_embeds):
181
+
182
+ multi_face = False
183
+ if faceid_embeds.dim() == 3:
184
+ multi_face = True
185
+ b, n, c = faceid_embeds.shape
186
+ faceid_embeds = faceid_embeds.reshape(b*n, c)
187
+
188
+ faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
189
+ image_prompt_embeds = self.image_proj_model(faceid_embeds)
190
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds))
191
+ if multi_face:
192
+ c = image_prompt_embeds.size(-1)
193
+ image_prompt_embeds = image_prompt_embeds.reshape(b, -1, c)
194
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.reshape(b, -1, c)
195
+
196
+ return image_prompt_embeds, uncond_image_prompt_embeds
197
+
198
+ def set_scale(self, scale):
199
+ for attn_processor in self.pipe.unet.attn_processors.values():
200
+ if isinstance(attn_processor, IPAttnProcessor):
201
+ attn_processor.scale = scale
202
+
203
+ def generate(
204
+ self,
205
+ faceid_embeds=None,
206
+ prompt=None,
207
+ negative_prompt=None,
208
+ scale=1.0,
209
+ num_samples=4,
210
+ seed=None,
211
+ guidance_scale=7.5,
212
+ num_inference_steps=30,
213
+ **kwargs,
214
+ ):
215
+ self.set_scale(scale)
216
+
217
+ num_prompts = faceid_embeds.size(0)
218
+
219
+ if prompt is None:
220
+ prompt = "best quality, high quality"
221
+ if negative_prompt is None:
222
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
223
+
224
+ if not isinstance(prompt, List):
225
+ prompt = [prompt] * num_prompts
226
+ else:
227
+ faceid_embeds = faceid_embeds.repeat(num_samples, 1, 1)
228
+ num_samples = 1
229
+
230
+ if not isinstance(negative_prompt, List):
231
+ negative_prompt = [negative_prompt] * num_prompts
232
+
233
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
234
+
235
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
236
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
237
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
238
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
239
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
240
+
241
+ with torch.inference_mode():
242
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
243
+ prompt,
244
+ device=self.device,
245
+ num_images_per_prompt=num_samples,
246
+ do_classifier_free_guidance=True,
247
+ negative_prompt=negative_prompt,
248
+ )
249
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
250
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
251
+
252
+ generator = get_generator(seed, self.device)
253
+
254
+ images = self.pipe(
255
+ prompt_embeds=prompt_embeds,
256
+ negative_prompt_embeds=negative_prompt_embeds,
257
+ guidance_scale=guidance_scale,
258
+ num_inference_steps=num_inference_steps,
259
+ generator=generator,
260
+ num_images_per_prompt=num_samples,
261
+ **kwargs,
262
+ ).images
263
+
264
+ return images
265
+
266
+
267
+ class IPAdapterFaceIDPlus:
268
+ def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, torch_dtype=torch.float16):
269
+ self.device = device
270
+ self.image_encoder_path = image_encoder_path
271
+ self.ip_ckpt = ip_ckpt
272
+ self.num_tokens = num_tokens
273
+ self.torch_dtype = torch_dtype
274
+
275
+ self.pipe = sd_pipe.to(self.device)
276
+ self.set_ip_adapter()
277
+
278
+ # load image encoder
279
+ self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
280
+ self.device, dtype=self.torch_dtype
281
+ )
282
+ self.clip_image_processor = CLIPImageProcessor()
283
+ # image proj model
284
+ self.image_proj_model = self.init_proj()
285
+
286
+ self.load_ip_adapter()
287
+
288
+ def init_proj(self):
289
+ image_proj_model = ProjPlusModel(
290
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
291
+ id_embeddings_dim=512,
292
+ clip_embeddings_dim=self.image_encoder.config.hidden_size,
293
+ num_tokens=self.num_tokens,
294
+ ).to(self.device, dtype=self.torch_dtype)
295
+ return image_proj_model
296
+
297
+ def set_ip_adapter(self):
298
+ unet = self.pipe.unet
299
+ attn_procs = {}
300
+ for name in unet.attn_processors.keys():
301
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
302
+ if name.startswith("mid_block"):
303
+ hidden_size = unet.config.block_out_channels[-1]
304
+ elif name.startswith("up_blocks"):
305
+ block_id = int(name[len("up_blocks.")])
306
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
307
+ elif name.startswith("down_blocks"):
308
+ block_id = int(name[len("down_blocks.")])
309
+ hidden_size = unet.config.block_out_channels[block_id]
310
+ if cross_attention_dim is None:
311
+ attn_procs[name] = AttnProcessor()
312
+ else:
313
+ attn_procs[name] = IPAttnProcessor(
314
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=self.num_tokens,
315
+ ).to(self.device, dtype=self.torch_dtype)
316
+ unet.set_attn_processor(attn_procs)
317
+
318
+ def load_ip_adapter(self):
319
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
320
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
321
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
322
+ for key in f.keys():
323
+ if key.startswith("image_proj."):
324
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
325
+ elif key.startswith("ip_adapter."):
326
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
327
+ else:
328
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
329
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
330
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
331
+ ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
332
+
333
+ @torch.inference_mode()
334
+ def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut):
335
+ if isinstance(face_image, Image.Image):
336
+ pil_image = [face_image]
337
+ clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
338
+ clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
339
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
340
+ uncond_clip_image_embeds = self.image_encoder(
341
+ torch.zeros_like(clip_image), output_hidden_states=True
342
+ ).hidden_states[-2]
343
+
344
+ faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
345
+ image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
346
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
347
+ return image_prompt_embeds, uncond_image_prompt_embeds
348
+
349
+ def set_scale(self, scale):
350
+ for attn_processor in self.pipe.unet.attn_processors.values():
351
+ if isinstance(attn_processor, LoRAIPAttnProcessor):
352
+ attn_processor.scale = scale
353
+
354
+ def generate(
355
+ self,
356
+ face_image=None,
357
+ faceid_embeds=None,
358
+ prompt=None,
359
+ negative_prompt=None,
360
+ scale=1.0,
361
+ num_samples=4,
362
+ seed=None,
363
+ guidance_scale=7.5,
364
+ num_inference_steps=30,
365
+ s_scale=1.0,
366
+ shortcut=False,
367
+ **kwargs,
368
+ ):
369
+ self.set_scale(scale)
370
+
371
+
372
+ num_prompts = faceid_embeds.size(0)
373
+
374
+ if prompt is None:
375
+ prompt = "best quality, high quality"
376
+ if negative_prompt is None:
377
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
378
+
379
+ if not isinstance(prompt, List):
380
+ prompt = [prompt] * num_prompts
381
+ if not isinstance(negative_prompt, List):
382
+ negative_prompt = [negative_prompt] * num_prompts
383
+
384
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
385
+
386
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
387
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
388
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
389
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
390
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
391
+
392
+ with torch.inference_mode():
393
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
394
+ prompt,
395
+ device=self.device,
396
+ num_images_per_prompt=num_samples,
397
+ do_classifier_free_guidance=True,
398
+ negative_prompt=negative_prompt,
399
+ )
400
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
401
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
402
+
403
+ generator = get_generator(seed, self.device)
404
+
405
+ images = self.pipe(
406
+ prompt_embeds=prompt_embeds,
407
+ negative_prompt_embeds=negative_prompt_embeds,
408
+ guidance_scale=guidance_scale,
409
+ num_inference_steps=num_inference_steps,
410
+ generator=generator,
411
+ **kwargs,
412
+ ).images
413
+
414
+ return images
415
+
416
+
417
+ class IPAdapterFaceIDXL(IPAdapterFaceID):
418
+ """SDXL"""
419
+
420
+ def generate(
421
+ self,
422
+ faceid_embeds=None,
423
+ prompt=None,
424
+ negative_prompt=None,
425
+ scale=1.0,
426
+ num_samples=4,
427
+ seed=None,
428
+ num_inference_steps=30,
429
+ **kwargs,
430
+ ):
431
+ self.set_scale(scale)
432
+
433
+ num_prompts = faceid_embeds.size(0)
434
+
435
+ if prompt is None:
436
+ prompt = "best quality, high quality"
437
+ if negative_prompt is None:
438
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
439
+
440
+ if not isinstance(prompt, List):
441
+ prompt = [prompt] * num_prompts
442
+ else:
443
+ faceid_embeds = faceid_embeds.repeat(num_samples, 1, 1)
444
+ num_samples = 1
445
+
446
+ if not isinstance(negative_prompt, List):
447
+ negative_prompt = [negative_prompt] * num_prompts
448
+
449
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
450
+
451
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
452
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
453
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
454
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
455
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
456
+
457
+ with torch.inference_mode():
458
+ (
459
+ prompt_embeds,
460
+ negative_prompt_embeds,
461
+ pooled_prompt_embeds,
462
+ negative_pooled_prompt_embeds,
463
+ ) = self.pipe.encode_prompt(
464
+ prompt,
465
+ num_images_per_prompt=num_samples,
466
+ do_classifier_free_guidance=True,
467
+ negative_prompt=negative_prompt,
468
+ )
469
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
470
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
471
+
472
+ generator = get_generator(seed, self.device)
473
+
474
+ images = self.pipe(
475
+ prompt_embeds=prompt_embeds,
476
+ negative_prompt_embeds=negative_prompt_embeds,
477
+ pooled_prompt_embeds=pooled_prompt_embeds,
478
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
479
+ num_inference_steps=num_inference_steps,
480
+ generator=generator,
481
+ num_images_per_prompt=num_samples,
482
+ **kwargs,
483
+ ).images
484
+
485
+ return images
486
+
487
+
488
+ class IPAdapterFaceIDPlusXL(IPAdapterFaceIDPlus):
489
+ """SDXL"""
490
+
491
+ def generate(
492
+ self,
493
+ face_image=None,
494
+ faceid_embeds=None,
495
+ prompt=None,
496
+ negative_prompt=None,
497
+ scale=1.0,
498
+ num_samples=4,
499
+ seed=None,
500
+ guidance_scale=7.5,
501
+ num_inference_steps=30,
502
+ s_scale=1.0,
503
+ shortcut=True,
504
+ **kwargs,
505
+ ):
506
+ self.set_scale(scale)
507
+
508
+ num_prompts = faceid_embeds.size(0)
509
+
510
+ if prompt is None:
511
+ prompt = "best quality, high quality"
512
+ if negative_prompt is None:
513
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
514
+
515
+ if not isinstance(prompt, List):
516
+ prompt = [prompt] * num_prompts
517
+ if not isinstance(negative_prompt, List):
518
+ negative_prompt = [negative_prompt] * num_prompts
519
+
520
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
521
+
522
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
523
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
524
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
525
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
526
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
527
+
528
+ with torch.inference_mode():
529
+ (
530
+ prompt_embeds,
531
+ negative_prompt_embeds,
532
+ pooled_prompt_embeds,
533
+ negative_pooled_prompt_embeds,
534
+ ) = self.pipe.encode_prompt(
535
+ prompt,
536
+ num_images_per_prompt=num_samples,
537
+ do_classifier_free_guidance=True,
538
+ negative_prompt=negative_prompt,
539
+ )
540
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
541
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
542
+
543
+ generator = get_generator(seed, self.device)
544
+
545
+ images = self.pipe(
546
+ prompt_embeds=prompt_embeds,
547
+ negative_prompt_embeds=negative_prompt_embeds,
548
+ pooled_prompt_embeds=pooled_prompt_embeds,
549
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
550
+ num_inference_steps=num_inference_steps,
551
+ generator=generator,
552
+ guidance_scale=guidance_scale,
553
+ **kwargs,
554
+ ).images
555
+
556
+ return images
ip_adapter/resampler.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
2
+ # and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
3
+
4
+ import math
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ from einops import rearrange
9
+ from einops.layers.torch import Rearrange
10
+
11
+
12
+ # FFN
13
+ def FeedForward(dim, mult=4):
14
+ inner_dim = int(dim * mult)
15
+ return nn.Sequential(
16
+ nn.LayerNorm(dim),
17
+ nn.Linear(dim, inner_dim, bias=False),
18
+ nn.GELU(),
19
+ nn.Linear(inner_dim, dim, bias=False),
20
+ )
21
+
22
+
23
+ def reshape_tensor(x, heads):
24
+ bs, length, width = x.shape
25
+ # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
26
+ x = x.view(bs, length, heads, -1)
27
+ # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
28
+ x = x.transpose(1, 2)
29
+ # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
30
+ x = x.reshape(bs, heads, length, -1)
31
+ return x
32
+
33
+
34
+ class PerceiverAttention(nn.Module):
35
+ def __init__(self, *, dim, dim_head=64, heads=8):
36
+ super().__init__()
37
+ self.scale = dim_head**-0.5
38
+ self.dim_head = dim_head
39
+ self.heads = heads
40
+ inner_dim = dim_head * heads
41
+
42
+ self.norm1 = nn.LayerNorm(dim)
43
+ self.norm2 = nn.LayerNorm(dim)
44
+
45
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
46
+ self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
47
+ self.to_out = nn.Linear(inner_dim, dim, bias=False)
48
+
49
+ def forward(self, x, latents):
50
+ """
51
+ Args:
52
+ x (torch.Tensor): image features
53
+ shape (b, n1, D)
54
+ latent (torch.Tensor): latent features
55
+ shape (b, n2, D)
56
+ """
57
+ x = self.norm1(x)
58
+ latents = self.norm2(latents)
59
+
60
+ b, l, _ = latents.shape
61
+
62
+ q = self.to_q(latents)
63
+ kv_input = torch.cat((x, latents), dim=-2)
64
+ k, v = self.to_kv(kv_input).chunk(2, dim=-1)
65
+
66
+ q = reshape_tensor(q, self.heads)
67
+ k = reshape_tensor(k, self.heads)
68
+ v = reshape_tensor(v, self.heads)
69
+
70
+ # attention
71
+ scale = 1 / math.sqrt(math.sqrt(self.dim_head))
72
+ weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
73
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
74
+ out = weight @ v
75
+
76
+ out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
77
+
78
+ return self.to_out(out)
79
+
80
+
81
+ class Resampler(nn.Module):
82
+ def __init__(
83
+ self,
84
+ dim=1024,
85
+ depth=8,
86
+ dim_head=64,
87
+ heads=16,
88
+ num_queries=8,
89
+ embedding_dim=768,
90
+ output_dim=1024,
91
+ ff_mult=4,
92
+ max_seq_len: int = 257, # CLIP tokens + CLS token
93
+ apply_pos_emb: bool = False,
94
+ num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
95
+ ):
96
+ super().__init__()
97
+ self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
98
+
99
+ self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
100
+
101
+ self.proj_in = nn.Linear(embedding_dim, dim)
102
+
103
+ self.proj_out = nn.Linear(dim, output_dim)
104
+ self.norm_out = nn.LayerNorm(output_dim)
105
+
106
+ self.to_latents_from_mean_pooled_seq = (
107
+ nn.Sequential(
108
+ nn.LayerNorm(dim),
109
+ nn.Linear(dim, dim * num_latents_mean_pooled),
110
+ Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
111
+ )
112
+ if num_latents_mean_pooled > 0
113
+ else None
114
+ )
115
+
116
+ self.layers = nn.ModuleList([])
117
+ for _ in range(depth):
118
+ self.layers.append(
119
+ nn.ModuleList(
120
+ [
121
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
122
+ FeedForward(dim=dim, mult=ff_mult),
123
+ ]
124
+ )
125
+ )
126
+
127
+ def forward(self, x):
128
+ if self.pos_emb is not None:
129
+ n, device = x.shape[1], x.device
130
+ pos_emb = self.pos_emb(torch.arange(n, device=device))
131
+ x = x + pos_emb
132
+
133
+ latents = self.latents.repeat(x.size(0), 1, 1)
134
+
135
+ x = self.proj_in(x)
136
+
137
+ if self.to_latents_from_mean_pooled_seq:
138
+ meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
139
+ meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
140
+ latents = torch.cat((meanpooled_latents, latents), dim=-2)
141
+
142
+ for attn, ff in self.layers:
143
+ latents = attn(x, latents) + latents
144
+ latents = ff(latents) + latents
145
+
146
+ latents = self.proj_out(latents)
147
+ return self.norm_out(latents)
148
+
149
+
150
+ def masked_mean(t, *, dim, mask=None):
151
+ if mask is None:
152
+ return t.mean(dim=dim)
153
+
154
+ denom = mask.sum(dim=dim, keepdim=True)
155
+ mask = rearrange(mask, "b n -> b n 1")
156
+ masked_t = t.masked_fill(~mask, 0.0)
157
+
158
+ return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
ip_adapter/sd3_attention_processor.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Callable, List, Optional, Union
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn
6
+ from diffusers.models.attention_processor import Attention
7
+
8
+
9
+ class JointAttnProcessor2_0:
10
+ """Attention processor used typically in processing the SD3-like self-attention projections."""
11
+
12
+ def __init__(self):
13
+ if not hasattr(F, "scaled_dot_product_attention"):
14
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
15
+
16
+ def __call__(
17
+ self,
18
+ attn: Attention,
19
+ hidden_states: torch.FloatTensor,
20
+ encoder_hidden_states: torch.FloatTensor = None,
21
+ attention_mask: Optional[torch.FloatTensor] = None,
22
+ *args,
23
+ **kwargs,
24
+ ) -> torch.FloatTensor:
25
+ residual = hidden_states
26
+
27
+ input_ndim = hidden_states.ndim
28
+ if input_ndim == 4:
29
+ batch_size, channel, height, width = hidden_states.shape
30
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
31
+ context_input_ndim = encoder_hidden_states.ndim
32
+ if context_input_ndim == 4:
33
+ batch_size, channel, height, width = encoder_hidden_states.shape
34
+ encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
35
+
36
+ batch_size = encoder_hidden_states.shape[0]
37
+
38
+ # `sample` projections.
39
+ query = attn.to_q(hidden_states)
40
+ key = attn.to_k(hidden_states)
41
+ value = attn.to_v(hidden_states)
42
+
43
+ # `context` projections.
44
+ encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
45
+ encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
46
+ encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
47
+
48
+ # attention
49
+ query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
50
+ key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
51
+ value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)
52
+
53
+ inner_dim = key.shape[-1]
54
+ head_dim = inner_dim // attn.heads
55
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
56
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
57
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
58
+
59
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
60
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
61
+ hidden_states = hidden_states.to(query.dtype)
62
+
63
+ # Split the attention outputs.
64
+ hidden_states, encoder_hidden_states = (
65
+ hidden_states[:, : residual.shape[1]],
66
+ hidden_states[:, residual.shape[1] :],
67
+ )
68
+
69
+ # linear proj
70
+ hidden_states = attn.to_out[0](hidden_states)
71
+ # dropout
72
+ hidden_states = attn.to_out[1](hidden_states)
73
+ if not attn.context_pre_only:
74
+ encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
75
+
76
+ if input_ndim == 4:
77
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
78
+ if context_input_ndim == 4:
79
+ encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
80
+
81
+ return hidden_states, encoder_hidden_states
82
+
83
+
84
+ class IPJointAttnProcessor2_0(torch.nn.Module):
85
+ """Attention processor used typically in processing the SD3-like self-attention projections."""
86
+
87
+ def __init__(self, context_dim, hidden_dim, scale=1.0):
88
+ if not hasattr(F, "scaled_dot_product_attention"):
89
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
90
+ super().__init__()
91
+ self.scale = scale
92
+
93
+ self.add_k_proj_ip = nn.Linear(context_dim, hidden_dim)
94
+ self.add_v_proj_ip = nn.Linear(context_dim, hidden_dim)
95
+
96
+
97
+ def __call__(
98
+ self,
99
+ attn: Attention,
100
+ hidden_states: torch.FloatTensor,
101
+ encoder_hidden_states: torch.FloatTensor = None,
102
+ attention_mask: Optional[torch.FloatTensor] = None,
103
+ ip_hidden_states: torch.FloatTensor = None,
104
+ *args,
105
+ **kwargs,
106
+ ) -> torch.FloatTensor:
107
+ residual = hidden_states
108
+
109
+ input_ndim = hidden_states.ndim
110
+ if input_ndim == 4:
111
+ batch_size, channel, height, width = hidden_states.shape
112
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
113
+ context_input_ndim = encoder_hidden_states.ndim
114
+ if context_input_ndim == 4:
115
+ batch_size, channel, height, width = encoder_hidden_states.shape
116
+ encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
117
+
118
+ batch_size = encoder_hidden_states.shape[0]
119
+
120
+ # `sample` projections.
121
+ query = attn.to_q(hidden_states)
122
+ key = attn.to_k(hidden_states)
123
+ value = attn.to_v(hidden_states)
124
+
125
+ sample_query = query # latent query
126
+
127
+ # `context` projections.
128
+ encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
129
+ encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
130
+ encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
131
+
132
+ # attention
133
+ query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
134
+ key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
135
+ value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)
136
+
137
+ inner_dim = key.shape[-1]
138
+ head_dim = inner_dim // attn.heads
139
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
140
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
141
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
142
+
143
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
144
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
145
+ hidden_states = hidden_states.to(query.dtype)
146
+
147
+ # Split the attention outputs.
148
+ hidden_states, encoder_hidden_states = (
149
+ hidden_states[:, : residual.shape[1]],
150
+ hidden_states[:, residual.shape[1] :],
151
+ )
152
+
153
+ # for ip-adapter
154
+ ip_key = self.add_k_proj_ip(ip_hidden_states)
155
+ ip_value = self.add_v_proj_ip(ip_hidden_states)
156
+ ip_query = sample_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
157
+ ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
158
+ ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
159
+
160
+ ip_hidden_states = F.scaled_dot_product_attention(ip_query, ip_key, ip_value, dropout_p=0.0, is_causal=False)
161
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
162
+ ip_hidden_states = ip_hidden_states.to(ip_query.dtype)
163
+
164
+ hidden_states = hidden_states + self.scale * ip_hidden_states
165
+
166
+ # linear proj
167
+ hidden_states = attn.to_out[0](hidden_states)
168
+ # dropout
169
+ hidden_states = attn.to_out[1](hidden_states)
170
+ if not attn.context_pre_only:
171
+ encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
172
+
173
+ if input_ndim == 4:
174
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
175
+ if context_input_ndim == 4:
176
+ encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
177
+
178
+ return hidden_states, encoder_hidden_states
179
+
ip_adapter/test_resampler.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from resampler import Resampler
3
+ from transformers import CLIPVisionModel
4
+
5
+ BATCH_SIZE = 2
6
+ OUTPUT_DIM = 1280
7
+ NUM_QUERIES = 8
8
+ NUM_LATENTS_MEAN_POOLED = 4 # 0 for no mean pooling (previous behavior)
9
+ APPLY_POS_EMB = True # False for no positional embeddings (previous behavior)
10
+ IMAGE_ENCODER_NAME_OR_PATH = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
11
+
12
+
13
+ def main():
14
+ image_encoder = CLIPVisionModel.from_pretrained(IMAGE_ENCODER_NAME_OR_PATH)
15
+ embedding_dim = image_encoder.config.hidden_size
16
+ print(f"image_encoder hidden size: ", embedding_dim)
17
+
18
+ image_proj_model = Resampler(
19
+ dim=1024,
20
+ depth=2,
21
+ dim_head=64,
22
+ heads=16,
23
+ num_queries=NUM_QUERIES,
24
+ embedding_dim=embedding_dim,
25
+ output_dim=OUTPUT_DIM,
26
+ ff_mult=2,
27
+ max_seq_len=257,
28
+ apply_pos_emb=APPLY_POS_EMB,
29
+ num_latents_mean_pooled=NUM_LATENTS_MEAN_POOLED,
30
+ )
31
+
32
+ dummy_images = torch.randn(BATCH_SIZE, 3, 224, 224)
33
+ with torch.no_grad():
34
+ image_embeds = image_encoder(dummy_images, output_hidden_states=True).hidden_states[-2]
35
+ print("image_embds shape: ", image_embeds.shape)
36
+
37
+ with torch.no_grad():
38
+ ip_tokens = image_proj_model(image_embeds)
39
+ print("ip_tokens shape:", ip_tokens.shape)
40
+ assert ip_tokens.shape == (BATCH_SIZE, NUM_QUERIES + NUM_LATENTS_MEAN_POOLED, OUTPUT_DIM)
41
+
42
+
43
+ if __name__ == "__main__":
44
+ main()
ip_adapter/utils.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import numpy as np
4
+ from PIL import Image
5
+
6
+ attn_maps = {}
7
+ def hook_fn(name):
8
+ def forward_hook(module, input, output):
9
+ if hasattr(module.processor, "attn_map"):
10
+ attn_maps[name] = module.processor.attn_map
11
+ del module.processor.attn_map
12
+
13
+ return forward_hook
14
+
15
+ def register_cross_attention_hook(unet):
16
+ for name, module in unet.named_modules():
17
+ if name.split('.')[-1].startswith('attn2'):
18
+ module.register_forward_hook(hook_fn(name))
19
+
20
+ return unet
21
+
22
+ def upscale(attn_map, target_size):
23
+ attn_map = torch.mean(attn_map, dim=0)
24
+ attn_map = attn_map.permute(1,0)
25
+ temp_size = None
26
+
27
+ for i in range(0,5):
28
+ scale = 2 ** i
29
+ if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64:
30
+ temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8))
31
+ break
32
+
33
+ assert temp_size is not None, "temp_size cannot is None"
34
+
35
+ attn_map = attn_map.view(attn_map.shape[0], *temp_size)
36
+
37
+ attn_map = F.interpolate(
38
+ attn_map.unsqueeze(0).to(dtype=torch.float32),
39
+ size=target_size,
40
+ mode='bilinear',
41
+ align_corners=False
42
+ )[0]
43
+
44
+ attn_map = torch.softmax(attn_map, dim=0)
45
+ return attn_map
46
+ def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
47
+
48
+ idx = 0 if instance_or_negative else 1
49
+ net_attn_maps = []
50
+
51
+ for name, attn_map in attn_maps.items():
52
+ attn_map = attn_map.cpu() if detach else attn_map
53
+ attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze()
54
+ attn_map = upscale(attn_map, image_size)
55
+ net_attn_maps.append(attn_map)
56
+
57
+ net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
58
+
59
+ return net_attn_maps
60
+
61
+ def attnmaps2images(net_attn_maps):
62
+
63
+ #total_attn_scores = 0
64
+ images = []
65
+
66
+ for attn_map in net_attn_maps:
67
+ attn_map = attn_map.cpu().numpy()
68
+ #total_attn_scores += attn_map.mean().item()
69
+
70
+ normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
71
+ normalized_attn_map = normalized_attn_map.astype(np.uint8)
72
+ #print("norm: ", normalized_attn_map.shape)
73
+ image = Image.fromarray(normalized_attn_map)
74
+
75
+ #image = fix_save_attn_map(attn_map)
76
+ images.append(image)
77
+
78
+ #print(total_attn_scores)
79
+ return images
80
+ def is_torch2_available():
81
+ return hasattr(F, "scaled_dot_product_attention")
82
+
83
+ def get_generator(seed, device):
84
+
85
+ if seed is not None:
86
+ if isinstance(seed, list):
87
+ generator = [torch.Generator(device).manual_seed(seed_item) for seed_item in seed]
88
+ else:
89
+ generator = torch.Generator(device).manual_seed(seed)
90
+ else:
91
+ generator = None
92
+
93
+ return generator
requirements.txt CHANGED
@@ -11,4 +11,3 @@ peft
11
  pillow-avif-plugin
12
  huggingface-hub==0.23.3
13
  opencv-python
14
- git+https://github.com/TempleX98/EasyRef.git
 
11
  pillow-avif-plugin
12
  huggingface-hub==0.23.3
13
  opencv-python