File size: 125,685 Bytes
e94c9bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 |
---
language:
- en
tags:
- sentence-transformers
- sparse-encoder
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
widget:
- source_sentence: who are the dancers in the limp bizkit rollin video
sentences:
- Voting age Before the Second World War, the voting age in almost all countries
was 21 years or higher. Czechoslovakia was the first to reduce the voting age
to 20 years in 1946, and by 1968 a total of 17 countries had lowered their voting
age.[1] Many countries, particularly in Western Europe, reduced their voting ages
to 18 years during the 1970s, starting with the United Kingdom (1969),[2] with
the United States (26th Amendment) (1971), Canada, West Germany (1972), Australia
(1974), France (1974), and others following soon afterwards. By the end of the
20th century, 18 had become by far the most common voting age. However, a few
countries maintain a voting age of 20 years or higher. It was argued that young
men could be drafted to go to war at 18, and many people felt they should be able
to vote at the age of 18.[3]
- Rollin' (Limp Bizkit song) The music video was filmed atop the South Tower of
the former World Trade Center in New York City. The introduction features Ben
Stiller and Stephen Dorff mistaking Fred Durst for the valet and giving him the
keys to their Bentley Azure. Also making a cameo is break dancer Mr. Wiggles.
The rest of the video has several cuts to Durst and his bandmates hanging out
of the Bentley as they drive about Manhattan. The song Ben Stiller is playing
at the beginning is "My Generation" from the same album. The video also features
scenes of Fred Durst with five girls dancing in a room. The video was filmed around
the same time as the film Zoolander, which explains Stiller and Dorff's appearance.
Fred Durst has a small cameo in that film.
- Eobard Thawne When Thawne reappears, he murders the revived Johnny Quick,[9] before
proceeding to trap Barry and the revived Max Mercury inside the negative Speed
Force. Thawne then attempts to kill Wally West's children through their connection
to the Speed Force in front of Linda Park-West, only to be stopped by Jay Garrick
and Bart Allen. Thawne defeats Jay and prepares to kill Bart, but Barry, Max,
Wally, Jesse Quick, and Impulse arrive to prevent the villain from doing so.[8][10]
In the ensuing fight, Thawne reveals that he is responsible for every tragedy
that has occurred in Barry's life, including the death of his mother. Thawne then
decides to destroy everything the Flash holds dear by killing Barry's wife, Iris,
before they even met.[10]
- source_sentence: who wins season 14 of hell's kitchen
sentences:
- Hell's Kitchen (U.S. season 14) Season 14 of the American competitive reality
television series Hell's Kitchen premiered on March 3, 2015 on Fox. The prize
is a head chef position at Gordon Ramsay Pub & Grill in Caesars Atlantic City.[1]
Gordon Ramsay returned as head chef with Andi Van Willigan and James Avery returning
as sous-chefs for both their respective kitchens as well as Marino Monferrato
as the maître d'. Executive chef Meghan Gill from Roanoke, Virginia, won the
competition, thus becoming the fourteenth winner of Hell's Kitchen.
- 'Maze Runner: The Death Cure On April 22, 2017, the studio delayed the release
date once again, to February 9, 2018, in order to allow more time for post-production;
months later, on August 25, the studio moved the release forward two weeks.[17]
The film will premiere on January 26, 2018 in 3D, IMAX and IMAX 3D.[18][19]'
- North American Plate On its western edge, the Farallon Plate has been subducting
under the North American Plate since the Jurassic Period. The Farallon Plate has
almost completely subducted beneath the western portion of the North American
Plate leaving that part of the North American Plate in contact with the Pacific
Plate as the San Andreas Fault. The Juan de Fuca, Explorer, Gorda, Rivera, Cocos
and Nazca plates are remnants of the Farallon Plate.
- source_sentence: who played the dj in the movie the warriors
sentences:
- List of Arrow episodes As of May 17, 2018,[update] 138 episodes of Arrow have
aired, concluding the sixth season. On April 2, 2018, the CW renewed the series
for a seventh season.[1]
- Lynne Thigpen Cherlynne Theresa "Lynne" Thigpen (December 22, 1948 – March 12,
2003) was an American actress, best known for her role as "The Chief" of ACME
in the various Carmen Sandiego television series and computer games from 1991
to 1997. For her varied television work, Thigpen was nominated for six Daytime
Emmy Awards; she won a Tony Award in 1997 for portraying Dr. Judith Kaufman in
An American Daughter.
- The Washington Post The Washington Post is an American daily newspaper. It is
the most widely circulated newspaper published in Washington, D.C., and was founded
on December 6, 1877,[7] making it the area's oldest extant newspaper. In February
2017, amid a barrage of criticism from President Donald Trump over the paper's
coverage of his campaign and early presidency as well as concerns among the American
press about Trump's criticism and threats against journalists who provide coverage
he deems unfavorable, the Post adopted the slogan "Democracy Dies in Darkness".[8]
- source_sentence: how old was messi when he started his career
sentences:
- Lionel Messi Born and raised in central Argentina, Messi was diagnosed with a
growth hormone deficiency as a child. At age 13, he relocated to Spain to join
Barcelona, who agreed to pay for his medical treatment. After a fast progression
through Barcelona's youth academy, Messi made his competitive debut aged 17 in
October 2004. Despite being injury-prone during his early career, he established
himself as an integral player for the club within the next three years, finishing
2007 as a finalist for both the Ballon d'Or and FIFA World Player of the Year
award, a feat he repeated the following year. His first uninterrupted campaign
came in the 2008–09 season, during which he helped Barcelona achieve the first
treble in Spanish football. At 22 years old, Messi won the Ballon d'Or and FIFA
World Player of the Year award by record voting margins.
- We Are Marshall Filming of We Are Marshall commenced on April 3, 2006, in Huntington,
West Virginia, and was completed in Atlanta, Georgia. The premiere for the film
was held at the Keith Albee Theater on December 12, 2006, in Huntington; other
special screenings were held at Pullman Square. The movie was released nationwide
on December 22, 2006.
- One Fish, Two Fish, Red Fish, Blue Fish One Fish, Two Fish, Red Fish, Blue Fish
is a 1960 children's book by Dr. Seuss. It is a simple rhyming book for beginning
readers, with a freewheeling plot about a boy and a girl named Jay and Kay and
the many amazing creatures they have for friends and pets. Interspersed are some
rather surreal and unrelated skits, such as a man named Ned whose feet stick out
from his bed, and a creature who has a bird in his ear. As of 2001, over 6 million
copies of the book had been sold, placing it 13th on a list of "All-Time Bestselling
Children's Books" from Publishers Weekly.[1] Based on a 2007 online poll, the
United States' National Education Association labor union named the book one of
its "Teachers' Top 100 Books for Children."[2]
- source_sentence: is send in the clowns from a musical
sentences:
- Money in the Bank ladder match The first match was contested in 2005 at WrestleMania
21, after being invented (in kayfabe) by Chris Jericho.[1] At the time, it was
exclusive to wrestlers of the Raw brand, and Edge won the inaugural match.[1]
From then until 2010, the Money in the Bank ladder match, now open to all WWE
brands, became a WrestleMania mainstay. 2010 saw a second and third Money in the
Bank ladder match when the Money in the Bank pay-per-view debuted in July. Unlike
the matches at WrestleMania, this new event featured two such ladder matches –
one each for a contract for the WWE Championship and World Heavyweight Championship,
respectively.
- The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired
on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off
of the Disney Channel Original Series The Suite Life of Zack & Cody. The series
follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in
a new setting, the SS Tipton, where they attend classes at "Seven Seas High School"
and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around
the world to nations such as Italy, France, Greece, India, Sweden and the United
Kingdom where the characters experience different cultures, adventures, and situations.[1]
- 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim
for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman''s
film Smiles of a Summer Night. It is a ballad from Act Two, in which the character
Desirée reflects on the ironies and disappointments of her life. Among other things,
she looks back on an affair years earlier with the lawyer Fredrik, who was deeply
in love with her but whose marriage proposals she had rejected. Meeting him after
so long, she realizes she is in love with him and finally ready to marry him,
but now it is he who rejects her: he is in an unconsummated marriage with a much
younger woman. Desirée proposes marriage to rescue him from this situation, but
he declines, citing his dedication to his bride. Reacting to his rejection, Desirée
sings this song. The song is later reprised as a coda after Fredrik''s young wife
runs away with his son, and Fredrik is finally free to accept Desirée''s offer.[1]'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
model-index:
- name: SparseEncoder
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.46
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.56
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.72
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.15999999999999998
name: Dot Precision@3
- type: dot_precision@5
value: 0.124
name: Dot Precision@5
- type: dot_precision@10
value: 0.08599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.06666666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.2383333333333333
name: Dot Recall@3
- type: dot_recall@5
value: 0.27999999999999997
name: Dot Recall@5
- type: dot_recall@10
value: 0.36999999999999994
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2677421246620843
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3605714285714285
name: Dot Mrr@10
- type: dot_map@100
value: 0.1850759743565379
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.66
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.76
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.84
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.94
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.66
name: Dot Precision@1
- type: dot_precision@3
value: 0.5266666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.488
name: Dot Precision@5
- type: dot_precision@10
value: 0.44800000000000006
name: Dot Precision@10
- type: dot_recall@1
value: 0.06670257100262758
name: Dot Recall@1
- type: dot_recall@3
value: 0.11974142991079241
name: Dot Recall@3
- type: dot_recall@5
value: 0.1791957371678672
name: Dot Recall@5
- type: dot_recall@10
value: 0.30349140489526194
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5343019203634498
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.735468253968254
name: Dot Mrr@10
- type: dot_map@100
value: 0.4049377767237549
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.48
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.82
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.88
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.92
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.48
name: Dot Precision@1
- type: dot_precision@3
value: 0.28
name: Dot Precision@3
- type: dot_precision@5
value: 0.17999999999999997
name: Dot Precision@5
- type: dot_precision@10
value: 0.09399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.47
name: Dot Recall@1
- type: dot_recall@3
value: 0.79
name: Dot Recall@3
- type: dot_recall@5
value: 0.85
name: Dot Recall@5
- type: dot_recall@10
value: 0.89
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7040555094504362
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6526666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.6419071669071669
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.52
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.23333333333333336
name: Dot Precision@3
- type: dot_precision@5
value: 0.17599999999999993
name: Dot Precision@5
- type: dot_precision@10
value: 0.10599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.18391269841269842
name: Dot Recall@1
- type: dot_recall@3
value: 0.30518253968253967
name: Dot Recall@3
- type: dot_recall@5
value: 0.37670634920634916
name: Dot Recall@5
- type: dot_recall@10
value: 0.47370634920634913
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.38850010242023175
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4707460317460317
name: Dot Mrr@10
- type: dot_map@100
value: 0.3248412848822558
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.74
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.88
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.92
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.74
name: Dot Precision@1
- type: dot_precision@3
value: 0.37999999999999984
name: Dot Precision@3
- type: dot_precision@5
value: 0.256
name: Dot Precision@5
- type: dot_precision@10
value: 0.142
name: Dot Precision@10
- type: dot_recall@1
value: 0.37
name: Dot Recall@1
- type: dot_recall@3
value: 0.57
name: Dot Recall@3
- type: dot_recall@5
value: 0.64
name: Dot Recall@5
- type: dot_recall@10
value: 0.71
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6641341464635651
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7923333333333333
name: Dot Mrr@10
- type: dot_map@100
value: 0.5975783218818589
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.2
name: Dot Precision@3
- type: dot_precision@5
value: 0.14
name: Dot Precision@5
- type: dot_precision@10
value: 0.08199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.32
name: Dot Recall@1
- type: dot_recall@3
value: 0.6
name: Dot Recall@3
- type: dot_recall@5
value: 0.7
name: Dot Recall@5
- type: dot_recall@10
value: 0.82
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5580216131954555
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.47502380952380946
name: Dot Mrr@10
- type: dot_map@100
value: 0.48536594051110177
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.54
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.56
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.32666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.3
name: Dot Precision@5
- type: dot_precision@10
value: 0.23800000000000004
name: Dot Precision@10
- type: dot_recall@1
value: 0.040931301515821
name: Dot Recall@1
- type: dot_recall@3
value: 0.07053120918183034
name: Dot Recall@3
- type: dot_recall@5
value: 0.09088994062974395
name: Dot Recall@5
- type: dot_recall@10
value: 0.1156589880572893
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2972257598049526
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.44519047619047614
name: Dot Mrr@10
- type: dot_map@100
value: 0.12826395582499595
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.62
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.74
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.21333333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.15200000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.35
name: Dot Recall@1
- type: dot_recall@3
value: 0.59
name: Dot Recall@3
- type: dot_recall@5
value: 0.69
name: Dot Recall@5
- type: dot_recall@10
value: 0.75
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5725986299850336
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5327142857142857
name: Dot Mrr@10
- type: dot_map@100
value: 0.514071091036335
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.76
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.86
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.92
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.76
name: Dot Precision@1
- type: dot_precision@3
value: 0.33333333333333326
name: Dot Precision@3
- type: dot_precision@5
value: 0.21599999999999994
name: Dot Precision@5
- type: dot_precision@10
value: 0.12799999999999997
name: Dot Precision@10
- type: dot_recall@1
value: 0.6673333333333333
name: Dot Recall@1
- type: dot_recall@3
value: 0.8079999999999999
name: Dot Recall@3
- type: dot_recall@5
value: 0.8613333333333333
name: Dot Recall@5
- type: dot_recall@10
value: 0.966
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.841867853215048
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8272460317460317
name: Dot Mrr@10
- type: dot_map@100
value: 0.7951434565434564
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.36
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.62
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.66
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.36
name: Dot Precision@1
- type: dot_precision@3
value: 0.28
name: Dot Precision@3
- type: dot_precision@5
value: 0.236
name: Dot Precision@5
- type: dot_precision@10
value: 0.174
name: Dot Precision@10
- type: dot_recall@1
value: 0.07566666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.17266666666666666
name: Dot Recall@3
- type: dot_recall@5
value: 0.24166666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.35666666666666663
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.33289046907153425
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5092936507936507
name: Dot Mrr@10
- type: dot_map@100
value: 0.2530417035110073
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.18666666666666668
name: Dot Precision@3
- type: dot_precision@5
value: 0.14
name: Dot Precision@5
- type: dot_precision@10
value: 0.08199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.22
name: Dot Recall@1
- type: dot_recall@3
value: 0.56
name: Dot Recall@3
- type: dot_recall@5
value: 0.7
name: Dot Recall@5
- type: dot_recall@10
value: 0.82
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5149698384079933
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4176904761904761
name: Dot Mrr@10
- type: dot_map@100
value: 0.4241184371184371
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.66
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.2333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.16
name: Dot Precision@5
- type: dot_precision@10
value: 0.09
name: Dot Precision@10
- type: dot_recall@1
value: 0.425
name: Dot Recall@1
- type: dot_recall@3
value: 0.63
name: Dot Recall@3
- type: dot_recall@5
value: 0.7
name: Dot Recall@5
- type: dot_recall@10
value: 0.79
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6152484517716852
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5620793650793651
name: Dot Mrr@10
- type: dot_map@100
value: 0.563195436355978
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.6122448979591837
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8571428571428571
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8979591836734694
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9591836734693877
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6122448979591837
name: Dot Precision@1
- type: dot_precision@3
value: 0.5918367346938777
name: Dot Precision@3
- type: dot_precision@5
value: 0.5142857142857142
name: Dot Precision@5
- type: dot_precision@10
value: 0.44285714285714284
name: Dot Precision@10
- type: dot_recall@1
value: 0.043460752262081716
name: Dot Recall@1
- type: dot_recall@3
value: 0.12859741651843118
name: Dot Recall@3
- type: dot_recall@5
value: 0.17924500279536645
name: Dot Recall@5
- type: dot_recall@10
value: 0.29401927639301495
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5011253143808486
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7391399416909621
name: Dot Mrr@10
- type: dot_map@100
value: 0.3876386317128788
name: Dot Map@100
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.45786499215070653
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6643956043956045
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7413814756671899
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8307064364207223
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.45786499215070653
name: Dot Precision@1
- type: dot_precision@3
value: 0.30347462061747776
name: Dot Precision@3
- type: dot_precision@5
value: 0.2370989010989011
name: Dot Precision@5
- type: dot_precision@10
value: 0.16898901098901098
name: Dot Precision@10
- type: dot_recall@1
value: 0.25382107614306887
name: Dot Recall@1
- type: dot_recall@3
value: 0.42946558425335335
name: Dot Recall@3
- type: dot_recall@5
value: 0.49915669459994827
name: Dot Recall@5
- type: dot_recall@10
value: 0.5891955911706602
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5225139794763322
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5784741347088285
name: Dot Mrr@10
- type: dot_map@100
value: 0.43885993672044354
name: Dot Map@100
---
# SparseEncoder
This is a [Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model trained on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 50368-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** Sparse Encoder
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Training Dataset:**
- [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("sparse-embedding/splade-ModernBERT-nq-fresh-lq0.05-lc0.003_scale1_lr-1e-4_bs64")
# Run inference
sentences = [
'is send in the clowns from a musical',
'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 50368)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:-----------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
| dot_accuracy@1 | 0.22 | 0.66 | 0.48 | 0.38 | 0.74 | 0.32 | 0.38 | 0.38 | 0.76 | 0.36 | 0.22 | 0.44 | 0.6122 |
| dot_accuracy@3 | 0.46 | 0.76 | 0.82 | 0.52 | 0.8 | 0.6 | 0.5 | 0.62 | 0.86 | 0.62 | 0.56 | 0.66 | 0.8571 |
| dot_accuracy@5 | 0.56 | 0.84 | 0.88 | 0.6 | 0.88 | 0.7 | 0.54 | 0.74 | 0.92 | 0.66 | 0.7 | 0.72 | 0.898 |
| dot_accuracy@10 | 0.72 | 0.94 | 0.92 | 0.7 | 0.92 | 0.82 | 0.56 | 0.8 | 1.0 | 0.84 | 0.82 | 0.8 | 0.9592 |
| dot_precision@1 | 0.22 | 0.66 | 0.48 | 0.38 | 0.74 | 0.32 | 0.38 | 0.38 | 0.76 | 0.36 | 0.22 | 0.44 | 0.6122 |
| dot_precision@3 | 0.16 | 0.5267 | 0.28 | 0.2333 | 0.38 | 0.2 | 0.3267 | 0.2133 | 0.3333 | 0.28 | 0.1867 | 0.2333 | 0.5918 |
| dot_precision@5 | 0.124 | 0.488 | 0.18 | 0.176 | 0.256 | 0.14 | 0.3 | 0.152 | 0.216 | 0.236 | 0.14 | 0.16 | 0.5143 |
| dot_precision@10 | 0.086 | 0.448 | 0.094 | 0.106 | 0.142 | 0.082 | 0.238 | 0.084 | 0.128 | 0.174 | 0.082 | 0.09 | 0.4429 |
| dot_recall@1 | 0.0667 | 0.0667 | 0.47 | 0.1839 | 0.37 | 0.32 | 0.0409 | 0.35 | 0.6673 | 0.0757 | 0.22 | 0.425 | 0.0435 |
| dot_recall@3 | 0.2383 | 0.1197 | 0.79 | 0.3052 | 0.57 | 0.6 | 0.0705 | 0.59 | 0.808 | 0.1727 | 0.56 | 0.63 | 0.1286 |
| dot_recall@5 | 0.28 | 0.1792 | 0.85 | 0.3767 | 0.64 | 0.7 | 0.0909 | 0.69 | 0.8613 | 0.2417 | 0.7 | 0.7 | 0.1792 |
| dot_recall@10 | 0.37 | 0.3035 | 0.89 | 0.4737 | 0.71 | 0.82 | 0.1157 | 0.75 | 0.966 | 0.3567 | 0.82 | 0.79 | 0.294 |
| **dot_ndcg@10** | **0.2677** | **0.5343** | **0.7041** | **0.3885** | **0.6641** | **0.558** | **0.2972** | **0.5726** | **0.8419** | **0.3329** | **0.515** | **0.6152** | **0.5011** |
| dot_mrr@10 | 0.3606 | 0.7355 | 0.6527 | 0.4707 | 0.7923 | 0.475 | 0.4452 | 0.5327 | 0.8272 | 0.5093 | 0.4177 | 0.5621 | 0.7391 |
| dot_map@100 | 0.1851 | 0.4049 | 0.6419 | 0.3248 | 0.5976 | 0.4854 | 0.1283 | 0.5141 | 0.7951 | 0.253 | 0.4241 | 0.5632 | 0.3876 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"climatefever",
"dbpedia",
"fever",
"fiqa2018",
"hotpotqa",
"msmarco",
"nfcorpus",
"nq",
"quoraretrieval",
"scidocs",
"arguana",
"scifact",
"touche2020"
]
}
```
| Metric | Value |
|:-----------------|:-----------|
| dot_accuracy@1 | 0.4579 |
| dot_accuracy@3 | 0.6644 |
| dot_accuracy@5 | 0.7414 |
| dot_accuracy@10 | 0.8307 |
| dot_precision@1 | 0.4579 |
| dot_precision@3 | 0.3035 |
| dot_precision@5 | 0.2371 |
| dot_precision@10 | 0.169 |
| dot_recall@1 | 0.2538 |
| dot_recall@3 | 0.4295 |
| dot_recall@5 | 0.4992 |
| dot_recall@10 | 0.5892 |
| **dot_ndcg@10** | **0.5225** |
| dot_mrr@10 | 0.5785 |
| dot_map@100 | 0.4389 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 29 characters</li><li>mean: 46.96 characters</li><li>max: 93 characters</li></ul> | <ul><li>min: 10 characters</li><li>mean: 582.13 characters</li><li>max: 2141 characters</li></ul> |
* Samples:
| query | answer |
|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> |
| <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
| <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
```json
{'lambda_corpus': 0.003, 'lambda_query': 0.05, 'main_loss': SparseMultipleNegativesRankingLoss(
(model): SparseEncoder(
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: ModernBertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'word_embedding_dimension': None})
)
(cross_entropy_loss): CrossEntropyLoss()
)}
```
### Evaluation Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 30 characters</li><li>mean: 47.2 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 58 characters</li><li>mean: 598.96 characters</li><li>max: 2480 characters</li></ul> |
* Samples:
| query | answer |
|:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
| <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> |
| <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
```json
{'lambda_corpus': 0.003, 'lambda_query': 0.05, 'main_loss': SparseMultipleNegativesRankingLoss(
(model): SparseEncoder(
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: ModernBertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'word_embedding_dimension': None})
)
(cross_entropy_loss): CrossEntropyLoss()
)}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `bf16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
|:---------:|:--------:|:-------------:|:---------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:-----------------------:|:------------------------:|:------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|:-------------------------:|
| 0.0065 | 10 | 7184.1445 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0129 | 20 | 1903.0385 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0194 | 30 | 909.2298 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0259 | 40 | 316.7136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0323 | 50 | 244.4539 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0388 | 60 | 294.2571 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0452 | 70 | 353.676 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0517 | 80 | 152.3629 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0582 | 90 | 104.8372 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0646 | 100 | 45.3187 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0711 | 110 | 22.4178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0776 | 120 | 13.1608 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0840 | 130 | 8.5385 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0905 | 140 | 6.384 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0970 | 150 | 4.6373 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1034 | 160 | 4.4281 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1099 | 170 | 3.8958 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1164 | 180 | 2.9138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1228 | 190 | 2.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1293 | 200 | 1.3596 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1357 | 210 | 0.931 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1422 | 220 | 0.8304 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1487 | 230 | 0.5943 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1551 | 240 | 0.4164 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1616 | 250 | 0.3703 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1681 | 260 | 0.3452 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1745 | 270 | 0.3224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1810 | 280 | 0.2795 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1875 | 290 | 0.2597 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1939 | 300 | 0.3003 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1997 | 309 | - | 0.2614 | 0.2510 | 0.4642 | 0.7084 | 0.2488 | 0.5736 | 0.4460 | 0.2437 | 0.3954 | 0.6417 | 0.2529 | 0.3068 | 0.5133 | 0.3905 | 0.4182 |
| 0.2004 | 310 | 0.2549 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2069 | 320 | 0.2208 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2133 | 330 | 0.215 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2198 | 340 | 0.2113 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2262 | 350 | 0.198 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2327 | 360 | 0.2177 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2392 | 370 | 0.3034 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2456 | 380 | 0.2184 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2521 | 390 | 0.211 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2586 | 400 | 0.1726 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2650 | 410 | 0.1745 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2715 | 420 | 0.1978 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2780 | 430 | 0.1966 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2844 | 440 | 0.1961 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2909 | 450 | 0.1705 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2973 | 460 | 0.2358 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3038 | 470 | 0.1643 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3103 | 480 | 0.1824 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3167 | 490 | 0.2357 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3232 | 500 | 0.1341 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3297 | 510 | 0.1786 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3361 | 520 | 0.1392 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3426 | 530 | 0.1434 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3491 | 540 | 0.1684 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3555 | 550 | 0.1827 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3620 | 560 | 0.1296 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3685 | 570 | 0.1731 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3749 | 580 | 0.182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3814 | 590 | 0.1587 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3878 | 600 | 0.1519 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3943 | 610 | 0.1944 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3995 | 618 | - | 0.1768 | 0.2776 | 0.4818 | 0.7670 | 0.3444 | 0.5941 | 0.4696 | 0.2791 | 0.5422 | 0.7823 | 0.2977 | 0.4389 | 0.5579 | 0.4978 | 0.4869 |
| 0.4008 | 620 | 0.1778 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4072 | 630 | 0.1595 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4137 | 640 | 0.1268 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4202 | 650 | 0.1361 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4266 | 660 | 0.1416 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4331 | 670 | 0.1139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4396 | 680 | 0.1734 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4460 | 690 | 0.1082 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4525 | 700 | 0.1198 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4590 | 710 | 0.0981 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4654 | 720 | 0.0943 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4719 | 730 | 0.1421 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4783 | 740 | 0.0903 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4848 | 750 | 0.1339 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4913 | 760 | 0.1109 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4977 | 770 | 0.1245 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5042 | 780 | 0.0949 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5107 | 790 | 0.0954 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5171 | 800 | 0.1136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5236 | 810 | 0.1206 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5301 | 820 | 0.101 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5365 | 830 | 0.1372 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5430 | 840 | 0.1123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5495 | 850 | 0.1358 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5559 | 860 | 0.1303 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5624 | 870 | 0.1339 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5688 | 880 | 0.1096 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5753 | 890 | 0.079 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5818 | 900 | 0.0988 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5882 | 910 | 0.1042 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5947 | 920 | 0.0905 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5992 | 927 | - | 0.1155 | 0.2490 | 0.5054 | 0.7070 | 0.3375 | 0.6075 | 0.4871 | 0.2843 | 0.5344 | 0.7616 | 0.3309 | 0.4869 | 0.6136 | 0.4983 | 0.4926 |
| 0.6012 | 930 | 0.0841 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6076 | 940 | 0.0946 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6141 | 950 | 0.086 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6206 | 960 | 0.118 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6270 | 970 | 0.0981 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6335 | 980 | 0.117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6399 | 990 | 0.0984 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6464 | 1000 | 0.1235 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6529 | 1010 | 0.1026 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6593 | 1020 | 0.0919 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6658 | 1030 | 0.0891 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6723 | 1040 | 0.1363 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6787 | 1050 | 0.0765 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6852 | 1060 | 0.0918 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6917 | 1070 | 0.1433 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6981 | 1080 | 0.076 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7046 | 1090 | 0.0851 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7111 | 1100 | 0.0811 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7175 | 1110 | 0.0775 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7240 | 1120 | 0.1029 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7304 | 1130 | 0.104 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7369 | 1140 | 0.0961 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7434 | 1150 | 0.1159 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7498 | 1160 | 0.0919 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7563 | 1170 | 0.0849 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7628 | 1180 | 0.1021 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7692 | 1190 | 0.065 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7757 | 1200 | 0.0858 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7822 | 1210 | 0.0826 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7886 | 1220 | 0.069 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7951 | 1230 | 0.0718 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| **0.799** | **1236** | **-** | **0.0956** | **0.2677** | **0.5343** | **0.7041** | **0.3885** | **0.6641** | **0.558** | **0.2972** | **0.5726** | **0.8419** | **0.3329** | **0.515** | **0.6152** | **0.5011** | **0.5225** |
| 0.8016 | 1240 | 0.076 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8080 | 1250 | 0.0703 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8145 | 1260 | 0.0615 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8209 | 1270 | 0.0969 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8274 | 1280 | 0.104 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8339 | 1290 | 0.0616 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8403 | 1300 | 0.0752 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8468 | 1310 | 0.0762 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8533 | 1320 | 0.0691 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8597 | 1330 | 0.102 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8662 | 1340 | 0.0778 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8727 | 1350 | 0.0619 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8791 | 1360 | 0.0865 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8856 | 1370 | 0.0546 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8920 | 1380 | 0.0705 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8985 | 1390 | 0.0713 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9050 | 1400 | 0.0669 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9114 | 1410 | 0.0742 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9179 | 1420 | 0.0714 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9244 | 1430 | 0.0753 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9308 | 1440 | 0.0536 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9373 | 1450 | 0.0765 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9438 | 1460 | 0.0665 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9502 | 1470 | 0.0736 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9567 | 1480 | 0.0559 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9632 | 1490 | 0.0587 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9696 | 1500 | 0.0798 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9761 | 1510 | 0.0819 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9825 | 1520 | 0.1039 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9890 | 1530 | 0.0617 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9955 | 1540 | 0.062 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9987 | 1545 | - | 0.0789 | 0.2818 | 0.5012 | 0.6833 | 0.3634 | 0.5937 | 0.5268 | 0.2913 | 0.5805 | 0.8237 | 0.3454 | 0.5020 | 0.6028 | 0.4961 | 0.5071 |
| 1 | -1 | - | - | 0.2677 | 0.5343 | 0.7041 | 0.3885 | 0.6641 | 0.5580 | 0.2972 | 0.5726 | 0.8419 | 0.3329 | 0.5150 | 0.6152 | 0.5011 | 0.5225 |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.12.10
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.48.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 2.21.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### SpladeLoss
```bibtex
@inproceedings{10.1145/3477495.3531857,
author = {Formal, Thibault and Lassance, Carlos and Piwowarski, Benjamin and Clinchant, St'{e}phane},
title = {From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
year = {2022},
isbn = {9781450387323},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3477495.3531857},
doi = {10.1145/3477495.3531857},
abstract = {Neural retrievers based on dense representations combined with Approximate Nearest Neighbors search have recently received a lot of attention, owing their success to distillation and/or better sampling of examples for training -- while still relying on the same backbone architecture. In the meantime, sparse representation learning fueled by traditional inverted indexing techniques has seen a growing interest, inheriting from desirable IR priors such as explicit lexical matching. While some architectural variants have been proposed, a lesser effort has been put in the training of such models. In this work, we build on SPLADE -- a sparse expansion-based retriever -- and show to which extent it is able to benefit from the same training improvements as dense models, by studying the effect of distillation, hard-negative mining as well as the Pre-trained Language Model initialization. We furthermore study the link between effectiveness and efficiency, on in-domain and zero-shot settings, leading to state-of-the-art results in both scenarios for sufficiently expressive models.},
booktitle = {Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {2353–2359},
numpages = {7},
keywords = {neural networks, indexing, sparse representations, regularization},
location = {Madrid, Spain},
series = {SIGIR '22}
}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |