starvector-1b-im2svg / starvector_arch.py
joanrodai's picture
Update starvector_arch.py
5e6d1bb verified
from transformers import (
PretrainedConfig,
PreTrainedModel
)
from torch.nn import CrossEntropyLoss
from transformers.models.gpt_bigcode.modeling_gpt_bigcode import CausalLMOutputWithCrossAttentions
from typing import Optional, Tuple, Union
import torch
from transformers.processing_utils import ProcessorMixin
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode, pad
from transformers.feature_extraction_sequence_utils import BatchFeature
from transformers import AutoProcessor
class SimpleStarVectorProcessor(ProcessorMixin):
attributes = ["tokenizer"] # Only include tokenizer in attributes
valid_kwargs = ["size", "mean", "std"] # Add other parameters as valid kwargs
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self,
tokenizer=None, # Make tokenizer the first argument
size=224,
mean=None,
std=None,
**kwargs,
):
if mean is None:
mean = (0.48145466, 0.4578275, 0.40821073)
if std is None:
std = (0.26862954, 0.26130258, 0.27577711)
# Store these as instance variables
self.mean = mean
self.std = std
self.size = size
self.normalize = transforms.Normalize(mean=mean, std=std)
self.transform = transforms.Compose([
transforms.Lambda(lambda img: img.convert("RGB") if img.mode == "RGBA" else img),
transforms.Lambda(lambda img: self._pad_to_square(img)),
transforms.Resize(size, interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
self.normalize
])
# Initialize parent class with tokenizer
super().__init__(tokenizer=tokenizer)
def __call__(self, images=None, text=None, max_length=None, **kwargs) -> BatchFeature:
"""
Process images and/or text inputs.
Args:
images: Optional image input(s)
text: Optional text input(s)
**kwargs: Additional arguments
"""
if images is None and text is None:
raise ValueError("You have to specify at least one of `images` or `text`.")
image_inputs = {}
if images is not None:
if isinstance(images, (list, tuple)):
images_ = torch.stack([self.transform(img) for img in images])
else:
images_ = self.transform(images)
image_inputs = {"pixel_values": images_}
text_inputs = {}
if text is not None:
text_inputs = self.tokenizer(
text, truncation=True,
add_special_tokens=True,
padding='longest',
max_length=max_length,
return_tensors="pt"
)
return BatchFeature(data={**text_inputs, **image_inputs})
def _pad_to_square(self, img):
# Calculate padding to make the image square
width, height = img.size
max_dim = max(width, height)
padding = [(max_dim - width) // 2, (max_dim - height) // 2]
padding += [max_dim - width - padding[0], max_dim - height - padding[1]]
return pad(img, padding, fill=255) # Assuming white padding
AutoProcessor.register(SimpleStarVectorProcessor, SimpleStarVectorProcessor)
class StarVectorConfig(PretrainedConfig):
model_type = "starvector"
def __init__(
self,
starcoder_model_name: str = "bigcode/starcoderbase-1b",
image_encoder_type: str = "clip",
adapter_norm: str = "layer_norm",
image_size: int = 224,
max_length: int = 8192,
max_length_train: int = 8192,
use_flash_attn: bool = True,
use_cache: bool = True,
num_attention_heads: int = 16,
num_hidden_layers: int = 24,
vocab_size: int = 49152,
hidden_size: int = 2048,
num_kv_heads: int = 4,
torch_dtype: str = "bfloat16",
**kwargs,
):
kwargs["torch_dtype"] = torch_dtype
self.starcoder_model_name = starcoder_model_name
self.image_encoder_type = image_encoder_type
self.adapter_norm = adapter_norm
self.image_size = image_size
self.max_length = max_length
self.max_length_train = max_length_train
self.use_flash_attn = use_flash_attn
self.use_cache = use_cache
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_kv_heads = num_kv_heads
super().__init__(**kwargs)
class StarVectorForCausalLM(PreTrainedModel):
config_class = StarVectorConfig
_no_split_modules = []
_supports_flash_attn_2 = True
def __init__(self, config: StarVectorConfig, **kwargs):
super().__init__(config)
starcoder_model_name = config.starcoder_model_name
if 'starcoder2' in starcoder_model_name:
from starvector.model.models.starvector_v2 import StarVectorStarCoder2
self.model = StarVectorStarCoder2(config=config, **kwargs)
else:
from starvector.model.models.starvector_v1 import StarVectorStarCoder
self.model = StarVectorStarCoder(config=config, **kwargs)
@property
def supports_gradient_checkpointing(self):
# If the underlying transformer (e.g., the one in StarCoderModel)
# supports gradient checkpointing, delegate to it.
if hasattr(self.model, 'svg_transformer'):
return getattr(self.model.svg_transformer, 'supports_gradient_checkpointing', False)
return False
def gradient_checkpointing_enable(self):
# Optionally, forward this call to the internal transformer.
if hasattr(self.model, 'svg_transformer') and hasattr(self.model.svg_transformer, 'gradient_checkpointing_enable'):
self.model.svg_transformer.gradient_checkpointing_enable()
def forward(self, vision_embeds, input_ids, num_generations, num_logits_to_keep) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Wrapper for the forward pass of the model.
"""
device = vision_embeds.device
completion_embeds = self.model._get_embeddings(input_ids)
vision_embeds = torch.cat([vision_embeds.repeat(num_generations, 1, 1), completion_embeds], dim=1)
attention_mask = torch.ones_like(vision_embeds[:, :, 0]).to(device)
transformer_outputs = self.model.svg_transformer.transformer.transformer(
inputs_embeds=vision_embeds,
attention_mask=attention_mask,
)
hidden_states = transformer_outputs[0]
if num_logits_to_keep > 0:
lm_logits = self.model.svg_transformer.transformer.lm_head(hidden_states[:, -num_logits_to_keep:, :])
else:
lm_logits = self.model.svg_transformer.transformer.lm_head(hidden_states)
loss = None
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
def generate_im2svg(self, batch, **kwargs):
return self.model.generate_im2svg(batch, **kwargs)
def generate_im2text(self, batch, **kwargs):
return self.model.generate_im2text(batch, **kwargs)
def process_images(self, images):
return self.model.image_encoder.process_images(images)
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
self.model.svg_transformer.transformer.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)