|
from transformers import ( |
|
PretrainedConfig, |
|
PreTrainedModel |
|
) |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.models.gpt_bigcode.modeling_gpt_bigcode import CausalLMOutputWithCrossAttentions |
|
from typing import Optional, Tuple, Union |
|
import torch |
|
|
|
from transformers.processing_utils import ProcessorMixin |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode, pad |
|
from transformers.feature_extraction_sequence_utils import BatchFeature |
|
from transformers import AutoProcessor |
|
|
|
class SimpleStarVectorProcessor(ProcessorMixin): |
|
attributes = ["tokenizer"] |
|
valid_kwargs = ["size", "mean", "std"] |
|
image_processor_class = "AutoImageProcessor" |
|
tokenizer_class = "AutoTokenizer" |
|
|
|
def __init__(self, |
|
tokenizer=None, |
|
size=224, |
|
mean=None, |
|
std=None, |
|
**kwargs, |
|
): |
|
if mean is None: |
|
mean = (0.48145466, 0.4578275, 0.40821073) |
|
if std is None: |
|
std = (0.26862954, 0.26130258, 0.27577711) |
|
|
|
|
|
self.mean = mean |
|
self.std = std |
|
self.size = size |
|
self.normalize = transforms.Normalize(mean=mean, std=std) |
|
|
|
self.transform = transforms.Compose([ |
|
transforms.Lambda(lambda img: img.convert("RGB") if img.mode == "RGBA" else img), |
|
transforms.Lambda(lambda img: self._pad_to_square(img)), |
|
transforms.Resize(size, interpolation=InterpolationMode.BICUBIC), |
|
transforms.ToTensor(), |
|
self.normalize |
|
]) |
|
|
|
|
|
super().__init__(tokenizer=tokenizer) |
|
|
|
|
|
def __call__(self, images=None, text=None, max_length=None, **kwargs) -> BatchFeature: |
|
""" |
|
Process images and/or text inputs. |
|
|
|
Args: |
|
images: Optional image input(s) |
|
text: Optional text input(s) |
|
**kwargs: Additional arguments |
|
""" |
|
if images is None and text is None: |
|
raise ValueError("You have to specify at least one of `images` or `text`.") |
|
|
|
image_inputs = {} |
|
if images is not None: |
|
if isinstance(images, (list, tuple)): |
|
images_ = torch.stack([self.transform(img) for img in images]) |
|
else: |
|
images_ = self.transform(images) |
|
image_inputs = {"pixel_values": images_} |
|
|
|
text_inputs = {} |
|
if text is not None: |
|
text_inputs = self.tokenizer( |
|
text, truncation=True, |
|
add_special_tokens=True, |
|
padding='longest', |
|
max_length=max_length, |
|
return_tensors="pt" |
|
) |
|
|
|
return BatchFeature(data={**text_inputs, **image_inputs}) |
|
|
|
def _pad_to_square(self, img): |
|
|
|
width, height = img.size |
|
max_dim = max(width, height) |
|
padding = [(max_dim - width) // 2, (max_dim - height) // 2] |
|
padding += [max_dim - width - padding[0], max_dim - height - padding[1]] |
|
return pad(img, padding, fill=255) |
|
|
|
|
|
AutoProcessor.register(SimpleStarVectorProcessor, SimpleStarVectorProcessor) |
|
|
|
|
|
class StarVectorConfig(PretrainedConfig): |
|
model_type = "starvector" |
|
|
|
def __init__( |
|
self, |
|
starcoder_model_name: str = "bigcode/starcoderbase-1b", |
|
image_encoder_type: str = "clip", |
|
adapter_norm: str = "layer_norm", |
|
image_size: int = 224, |
|
max_length: int = 8192, |
|
max_length_train: int = 8192, |
|
use_flash_attn: bool = True, |
|
use_cache: bool = True, |
|
num_attention_heads: int = 16, |
|
num_hidden_layers: int = 24, |
|
vocab_size: int = 49152, |
|
hidden_size: int = 2048, |
|
num_kv_heads: int = 4, |
|
torch_dtype: str = "bfloat16", |
|
**kwargs, |
|
): |
|
kwargs["torch_dtype"] = torch_dtype |
|
self.starcoder_model_name = starcoder_model_name |
|
self.image_encoder_type = image_encoder_type |
|
self.adapter_norm = adapter_norm |
|
self.image_size = image_size |
|
self.max_length = max_length |
|
self.max_length_train = max_length_train |
|
self.use_flash_attn = use_flash_attn |
|
self.use_cache = use_cache |
|
self.num_attention_heads = num_attention_heads |
|
self.num_hidden_layers = num_hidden_layers |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_kv_heads = num_kv_heads |
|
super().__init__(**kwargs) |
|
|
|
class StarVectorForCausalLM(PreTrainedModel): |
|
config_class = StarVectorConfig |
|
_no_split_modules = [] |
|
_supports_flash_attn_2 = True |
|
|
|
def __init__(self, config: StarVectorConfig, **kwargs): |
|
super().__init__(config) |
|
starcoder_model_name = config.starcoder_model_name |
|
if 'starcoder2' in starcoder_model_name: |
|
from starvector.model.models.starvector_v2 import StarVectorStarCoder2 |
|
self.model = StarVectorStarCoder2(config=config, **kwargs) |
|
else: |
|
from starvector.model.models.starvector_v1 import StarVectorStarCoder |
|
self.model = StarVectorStarCoder(config=config, **kwargs) |
|
|
|
|
|
@property |
|
def supports_gradient_checkpointing(self): |
|
|
|
|
|
if hasattr(self.model, 'svg_transformer'): |
|
return getattr(self.model.svg_transformer, 'supports_gradient_checkpointing', False) |
|
return False |
|
|
|
def gradient_checkpointing_enable(self): |
|
|
|
if hasattr(self.model, 'svg_transformer') and hasattr(self.model.svg_transformer, 'gradient_checkpointing_enable'): |
|
self.model.svg_transformer.gradient_checkpointing_enable() |
|
|
|
def forward(self, vision_embeds, input_ids, num_generations, num_logits_to_keep) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
Wrapper for the forward pass of the model. |
|
""" |
|
device = vision_embeds.device |
|
|
|
completion_embeds = self.model._get_embeddings(input_ids) |
|
vision_embeds = torch.cat([vision_embeds.repeat(num_generations, 1, 1), completion_embeds], dim=1) |
|
attention_mask = torch.ones_like(vision_embeds[:, :, 0]).to(device) |
|
|
|
transformer_outputs = self.model.svg_transformer.transformer.transformer( |
|
inputs_embeds=vision_embeds, |
|
attention_mask=attention_mask, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
if num_logits_to_keep > 0: |
|
lm_logits = self.model.svg_transformer.transformer.lm_head(hidden_states[:, -num_logits_to_keep:, :]) |
|
else: |
|
lm_logits = self.model.svg_transformer.transformer.lm_head(hidden_states) |
|
loss = None |
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
cross_attentions=transformer_outputs.cross_attentions, |
|
) |
|
|
|
def generate_im2svg(self, batch, **kwargs): |
|
return self.model.generate_im2svg(batch, **kwargs) |
|
|
|
def generate_im2text(self, batch, **kwargs): |
|
return self.model.generate_im2text(batch, **kwargs) |
|
|
|
def process_images(self, images): |
|
return self.model.image_encoder.process_images(images) |
|
|
|
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None): |
|
self.model.svg_transformer.transformer.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs) |
|
|
|
|
|
|