Upload processing_starvector.py
Browse files- processing_starvector.py +66 -0
processing_starvector.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.processing_utils import ProcessorMixin
|
2 |
+
from torchvision import transforms
|
3 |
+
from torchvision.transforms.functional import InterpolationMode, pad
|
4 |
+
from transformers.feature_extraction_sequence_utils import BatchFeature
|
5 |
+
|
6 |
+
class SimpleStarVectorProcessor(ProcessorMixin):
|
7 |
+
attributes = ["tokenizer"] # Only include tokenizer in attributes
|
8 |
+
valid_kwargs = ["size", "mean", "std"] # Add other parameters as valid kwargs
|
9 |
+
image_processor_class = "AutoImageProcessor"
|
10 |
+
tokenizer_class = "AutoTokenizer"
|
11 |
+
|
12 |
+
def __init__(self,
|
13 |
+
tokenizer=None, # Make tokenizer the first argument
|
14 |
+
size=224,
|
15 |
+
mean=None,
|
16 |
+
std=None,
|
17 |
+
**kwargs,
|
18 |
+
):
|
19 |
+
if mean is None:
|
20 |
+
mean = (0.48145466, 0.4578275, 0.40821073)
|
21 |
+
if std is None:
|
22 |
+
std = (0.26862954, 0.26130258, 0.27577711)
|
23 |
+
|
24 |
+
# Store these as instance variables
|
25 |
+
self.mean = mean
|
26 |
+
self.std = std
|
27 |
+
self.size = size
|
28 |
+
|
29 |
+
self.normalize = transforms.Normalize(mean=mean, std=std)
|
30 |
+
|
31 |
+
self.transform = transforms.Compose([
|
32 |
+
transforms.Lambda(lambda img: img.convert("RGB") if img.mode == "RGBA" else img),
|
33 |
+
transforms.Lambda(lambda img: self._pad_to_square(img)),
|
34 |
+
transforms.Resize(size, interpolation=InterpolationMode.BICUBIC),
|
35 |
+
transforms.ToTensor(),
|
36 |
+
self.normalize
|
37 |
+
])
|
38 |
+
|
39 |
+
# Initialize parent class with tokenizer
|
40 |
+
super().__init__(tokenizer=tokenizer)
|
41 |
+
|
42 |
+
|
43 |
+
def __call__(self, images=None, text=None, **kwargs) -> BatchFeature:
|
44 |
+
"""
|
45 |
+
Process images and/or text inputs.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
images: Optional image input(s)
|
49 |
+
text: Optional text input(s)
|
50 |
+
**kwargs: Additional arguments
|
51 |
+
"""
|
52 |
+
if images is None and text is None:
|
53 |
+
raise ValueError("You have to specify at least one of `images` or `text`.")
|
54 |
+
|
55 |
+
image_inputs = {}
|
56 |
+
if images is not None:
|
57 |
+
if isinstance(images, (list, tuple)):
|
58 |
+
images_ = [self.transform(img) for img in images]
|
59 |
+
else:
|
60 |
+
images_ = self.transform(images)
|
61 |
+
image_inputs = {"pixel_values": images_}
|
62 |
+
|
63 |
+
text_inputs = {}
|
64 |
+
if text is not None:
|
65 |
+
text_inputs = self.tokenizer(text, **kwargs)
|
66 |
+
return BatchFeature(data={**text_inputs, **image_inputs})
|