joanrodai commited on
Commit
c6478fa
·
verified ·
1 Parent(s): 4dce64a

Update starvector_arch.py

Browse files
Files changed (1) hide show
  1. starvector_arch.py +31 -60
starvector_arch.py CHANGED
@@ -35,7 +35,6 @@ class SimpleStarVectorProcessor(ProcessorMixin):
35
  self.mean = mean
36
  self.std = std
37
  self.size = size
38
-
39
  self.normalize = transforms.Normalize(mean=mean, std=std)
40
 
41
  self.transform = transforms.Compose([
@@ -50,7 +49,7 @@ class SimpleStarVectorProcessor(ProcessorMixin):
50
  super().__init__(tokenizer=tokenizer)
51
 
52
 
53
- def __call__(self, images=None, text=None, **kwargs) -> BatchFeature:
54
  """
55
  Process images and/or text inputs.
56
 
@@ -65,16 +64,32 @@ class SimpleStarVectorProcessor(ProcessorMixin):
65
  image_inputs = {}
66
  if images is not None:
67
  if isinstance(images, (list, tuple)):
68
- images_ = [self.transform(img) for img in images]
69
  else:
70
  images_ = self.transform(images)
71
  image_inputs = {"pixel_values": images_}
72
 
73
  text_inputs = {}
74
  if text is not None:
75
- text_inputs = self.tokenizer(text, **kwargs)
 
 
 
 
 
 
 
76
  return BatchFeature(data={**text_inputs, **image_inputs})
77
 
 
 
 
 
 
 
 
 
 
78
  AutoProcessor.register(SimpleStarVectorProcessor, SimpleStarVectorProcessor)
79
 
80
 
@@ -128,6 +143,7 @@ class StarVectorForCausalLM(PreTrainedModel):
128
  else:
129
  from starvector.model.models.starvector_v1 import StarVectorStarCoder
130
  self.model = StarVectorStarCoder(config=config, **kwargs)
 
131
 
132
  @property
133
  def supports_gradient_checkpointing(self):
@@ -142,70 +158,28 @@ class StarVectorForCausalLM(PreTrainedModel):
142
  if hasattr(self.model, 'svg_transformer') and hasattr(self.model.svg_transformer, 'gradient_checkpointing_enable'):
143
  self.model.svg_transformer.gradient_checkpointing_enable()
144
 
145
- def forward(
146
- self,
147
- input_ids: Optional[torch.Tensor] = None,
148
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
149
- attention_mask: Optional[torch.Tensor] = None,
150
- token_type_ids: Optional[torch.Tensor] = None,
151
- position_ids: Optional[torch.Tensor] = None,
152
- head_mask: Optional[torch.Tensor] = None,
153
- inputs_embeds: Optional[torch.Tensor] = None,
154
- encoder_hidden_states: Optional[torch.Tensor] = None,
155
- encoder_attention_mask: Optional[torch.Tensor] = None,
156
- labels: Optional[torch.Tensor] = None,
157
- use_cache: Optional[bool] = None,
158
- output_attentions: Optional[bool] = None,
159
- output_hidden_states: Optional[bool] = None,
160
- return_dict: Optional[bool] = None,
161
- num_logits_to_keep: int = 0,
162
- ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
163
  r"""
164
- labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
165
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
166
- `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
167
- are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
168
  """
169
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
170
 
171
- transformer_outputs = self.model.svg_transformer.transformer(
172
- input_ids,
173
- past_key_values=past_key_values,
 
 
 
174
  attention_mask=attention_mask,
175
- token_type_ids=token_type_ids,
176
- position_ids=position_ids,
177
- head_mask=head_mask,
178
- inputs_embeds=inputs_embeds,
179
- encoder_hidden_states=encoder_hidden_states,
180
- encoder_attention_mask=encoder_attention_mask,
181
- use_cache=use_cache,
182
- output_attentions=output_attentions,
183
- output_hidden_states=output_hidden_states,
184
- return_dict=return_dict,
185
  )
186
  hidden_states = transformer_outputs[0]
187
 
188
  # If GRPO requested only the last tokens, slice accordingly.
189
  if num_logits_to_keep > 0:
190
- lm_logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
191
  else:
192
- lm_logits = self.lm_head(hidden_states)
193
-
194
- # lm_logits = self.lm_head(hidden_states)
195
-
196
  loss = None
197
- if labels is not None:
198
- # Shift so that tokens < n predict n
199
- shift_logits = lm_logits[..., :-1, :].contiguous()
200
- shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
201
- # Flatten the tokens
202
- loss_fct = CrossEntropyLoss()
203
- loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
204
-
205
- if not return_dict:
206
- output = (lm_logits,) + transformer_outputs[1:]
207
- return ((loss,) + output) if loss is not None else output
208
-
209
  return CausalLMOutputWithCrossAttentions(
210
  loss=loss,
211
  logits=lm_logits,
@@ -214,9 +188,6 @@ class StarVectorForCausalLM(PreTrainedModel):
214
  attentions=transformer_outputs.attentions,
215
  cross_attentions=transformer_outputs.cross_attentions,
216
  )
217
-
218
- # def forward(self, batch):
219
- # return self.model(batch)
220
 
221
  def generate_im2svg(self, batch, **kwargs):
222
  return self.model.generate_im2svg(batch, **kwargs)
 
35
  self.mean = mean
36
  self.std = std
37
  self.size = size
 
38
  self.normalize = transforms.Normalize(mean=mean, std=std)
39
 
40
  self.transform = transforms.Compose([
 
49
  super().__init__(tokenizer=tokenizer)
50
 
51
 
52
+ def __call__(self, images=None, text=None, max_length=None, **kwargs) -> BatchFeature:
53
  """
54
  Process images and/or text inputs.
55
 
 
64
  image_inputs = {}
65
  if images is not None:
66
  if isinstance(images, (list, tuple)):
67
+ images_ = torch.stack([self.transform(img) for img in images])
68
  else:
69
  images_ = self.transform(images)
70
  image_inputs = {"pixel_values": images_}
71
 
72
  text_inputs = {}
73
  if text is not None:
74
+ text_inputs = self.tokenizer(
75
+ text, truncation=True,
76
+ add_special_tokens=True,
77
+ padding='longest',
78
+ max_length=max_length,
79
+ return_tensors="pt"
80
+ )
81
+
82
  return BatchFeature(data={**text_inputs, **image_inputs})
83
 
84
+ def _pad_to_square(self, img):
85
+ # Calculate padding to make the image square
86
+ width, height = img.size
87
+ max_dim = max(width, height)
88
+ padding = [(max_dim - width) // 2, (max_dim - height) // 2]
89
+ padding += [max_dim - width - padding[0], max_dim - height - padding[1]]
90
+ return pad(img, padding, fill=255) # Assuming white padding
91
+
92
+
93
  AutoProcessor.register(SimpleStarVectorProcessor, SimpleStarVectorProcessor)
94
 
95
 
 
143
  else:
144
  from starvector.model.models.starvector_v1 import StarVectorStarCoder
145
  self.model = StarVectorStarCoder(config=config, **kwargs)
146
+
147
 
148
  @property
149
  def supports_gradient_checkpointing(self):
 
158
  if hasattr(self.model, 'svg_transformer') and hasattr(self.model.svg_transformer, 'gradient_checkpointing_enable'):
159
  self.model.svg_transformer.gradient_checkpointing_enable()
160
 
161
+ def forward(self, inputs_embeds, input_ids, num_generations, num_logits_to_keep) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  r"""
163
+ Wrapper for the forward pass of the model.
 
 
 
164
  """
165
+ device = inputs_embeds.device
166
 
167
+ completion_embeds = self.model._get_embeddings(input_ids)
168
+ inputs_embeds = torch.cat([inputs_embeds.repeat(num_generations, 1, 1), completion_embeds], dim=1)
169
+ attention_mask = torch.ones_like(inputs_embeds[:, :, 0]).to(device)
170
+
171
+ transformer_outputs = self.model.svg_transformer.transformer.transformer(
172
+ inputs_embeds=inputs_embeds,
173
  attention_mask=attention_mask,
 
 
 
 
 
 
 
 
 
 
174
  )
175
  hidden_states = transformer_outputs[0]
176
 
177
  # If GRPO requested only the last tokens, slice accordingly.
178
  if num_logits_to_keep > 0:
179
+ lm_logits = self.model.svg_transformer.transformer.lm_head(hidden_states[:, -num_logits_to_keep:, :])
180
  else:
181
+ lm_logits = self.model.svg_transformer.transformer.lm_head(hidden_states)
 
 
 
182
  loss = None
 
 
 
 
 
 
 
 
 
 
 
 
183
  return CausalLMOutputWithCrossAttentions(
184
  loss=loss,
185
  logits=lm_logits,
 
188
  attentions=transformer_outputs.attentions,
189
  cross_attentions=transformer_outputs.cross_attentions,
190
  )
 
 
 
191
 
192
  def generate_im2svg(self, batch, **kwargs):
193
  return self.model.generate_im2svg(batch, **kwargs)