starvector-8b-im2svg / starvector_arch.py
joanrodai's picture
Update starvector architecture file
4760193 verified
from transformers import (
PretrainedConfig,
PreTrainedModel
)
import torch
class StarVectorConfig(PretrainedConfig):
model_type = "starvector"
def __init__(
self,
starcoder_model_name: str = "bigcode/starcoderbase-1b",
image_encoder_type: str = "clip",
adapter_norm: str = "layer_norm",
image_size: int = 224,
max_length: int = 8192,
max_length_train: int = 8192,
use_flash_attn: bool = True,
use_cache: bool = True,
num_attention_heads: int = 16,
num_hidden_layers: int = 24,
vocab_size: int = 49152,
hidden_size: int = 2048,
num_kv_heads: int = 4,
torch_dtype: str = "bfloat16",
**kwargs,
):
self.starcoder_model_name = starcoder_model_name
self.image_encoder_type = image_encoder_type
self.adapter_norm = adapter_norm
self.image_size = image_size
self.max_length = max_length
self.max_length_train = max_length_train
self.use_flash_attn = use_flash_attn
self.use_cache = use_cache
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_kv_heads = num_kv_heads
self.torch_dtype = torch_dtype
super().__init__(**kwargs)
class StarVectorForCausalLM(PreTrainedModel):
config_class = StarVectorConfig
_no_split_modules = []
def __init__(self, config: StarVectorConfig, **kwargs):
super().__init__(config)
starcoder_model_name = config.starcoder_model_name
if 'starcoder2' in starcoder_model_name:
from starvector.model.models.starvector_v2 import StarVectorStarCoder2
self.model = StarVectorStarCoder2(config=config, **kwargs)
else:
from starvector.model.models.starvector_v1 import StarVectorStarCoder
self.model = StarVectorStarCoder(config=config, **kwargs)
def forward(self, batch):
return self.model(batch)
def generate_im2svg(self, batch, **kwargs):
return self.model.generate_im2svg(batch, **kwargs)
def generate_im2text(self, batch, **kwargs):
return self.model.generate_im2text(batch, **kwargs)
def process_images(self, images):
return self.model.image_encoder.process_images(images)