File size: 24,010 Bytes
8e0c0aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
2023-10-17 09:36:26,101 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:26,102 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 09:36:26,102 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:26,102 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-17 09:36:26,102 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:26,102 Train:  1214 sentences
2023-10-17 09:36:26,102         (train_with_dev=False, train_with_test=False)
2023-10-17 09:36:26,102 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:26,103 Training Params:
2023-10-17 09:36:26,103  - learning_rate: "3e-05" 
2023-10-17 09:36:26,103  - mini_batch_size: "8"
2023-10-17 09:36:26,103  - max_epochs: "10"
2023-10-17 09:36:26,103  - shuffle: "True"
2023-10-17 09:36:26,103 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:26,103 Plugins:
2023-10-17 09:36:26,103  - TensorboardLogger
2023-10-17 09:36:26,103  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 09:36:26,103 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:26,103 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 09:36:26,103  - metric: "('micro avg', 'f1-score')"
2023-10-17 09:36:26,103 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:26,103 Computation:
2023-10-17 09:36:26,103  - compute on device: cuda:0
2023-10-17 09:36:26,103  - embedding storage: none
2023-10-17 09:36:26,103 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:26,103 Model training base path: "hmbench-ajmc/en-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-17 09:36:26,103 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:26,103 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:26,103 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 09:36:26,932 epoch 1 - iter 15/152 - loss 3.35898714 - time (sec): 0.83 - samples/sec: 3632.65 - lr: 0.000003 - momentum: 0.000000
2023-10-17 09:36:27,788 epoch 1 - iter 30/152 - loss 3.02212465 - time (sec): 1.68 - samples/sec: 3534.27 - lr: 0.000006 - momentum: 0.000000
2023-10-17 09:36:28,663 epoch 1 - iter 45/152 - loss 2.45612354 - time (sec): 2.56 - samples/sec: 3670.98 - lr: 0.000009 - momentum: 0.000000
2023-10-17 09:36:29,535 epoch 1 - iter 60/152 - loss 1.99749694 - time (sec): 3.43 - samples/sec: 3698.47 - lr: 0.000012 - momentum: 0.000000
2023-10-17 09:36:30,327 epoch 1 - iter 75/152 - loss 1.73641236 - time (sec): 4.22 - samples/sec: 3660.69 - lr: 0.000015 - momentum: 0.000000
2023-10-17 09:36:31,127 epoch 1 - iter 90/152 - loss 1.52634135 - time (sec): 5.02 - samples/sec: 3636.89 - lr: 0.000018 - momentum: 0.000000
2023-10-17 09:36:32,009 epoch 1 - iter 105/152 - loss 1.36260959 - time (sec): 5.90 - samples/sec: 3626.11 - lr: 0.000021 - momentum: 0.000000
2023-10-17 09:36:32,868 epoch 1 - iter 120/152 - loss 1.24452509 - time (sec): 6.76 - samples/sec: 3614.67 - lr: 0.000023 - momentum: 0.000000
2023-10-17 09:36:33,728 epoch 1 - iter 135/152 - loss 1.14524406 - time (sec): 7.62 - samples/sec: 3601.31 - lr: 0.000026 - momentum: 0.000000
2023-10-17 09:36:34,591 epoch 1 - iter 150/152 - loss 1.05621100 - time (sec): 8.49 - samples/sec: 3611.55 - lr: 0.000029 - momentum: 0.000000
2023-10-17 09:36:34,694 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:34,694 EPOCH 1 done: loss 1.0473 - lr: 0.000029
2023-10-17 09:36:35,450 DEV : loss 0.23443591594696045 - f1-score (micro avg)  0.5184
2023-10-17 09:36:35,456 saving best model
2023-10-17 09:36:35,781 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:36,672 epoch 2 - iter 15/152 - loss 0.24169486 - time (sec): 0.89 - samples/sec: 3386.25 - lr: 0.000030 - momentum: 0.000000
2023-10-17 09:36:37,515 epoch 2 - iter 30/152 - loss 0.23715876 - time (sec): 1.73 - samples/sec: 3525.57 - lr: 0.000029 - momentum: 0.000000
2023-10-17 09:36:38,343 epoch 2 - iter 45/152 - loss 0.21104596 - time (sec): 2.56 - samples/sec: 3598.89 - lr: 0.000029 - momentum: 0.000000
2023-10-17 09:36:39,220 epoch 2 - iter 60/152 - loss 0.20097868 - time (sec): 3.44 - samples/sec: 3562.82 - lr: 0.000029 - momentum: 0.000000
2023-10-17 09:36:40,138 epoch 2 - iter 75/152 - loss 0.19466306 - time (sec): 4.35 - samples/sec: 3541.60 - lr: 0.000028 - momentum: 0.000000
2023-10-17 09:36:40,980 epoch 2 - iter 90/152 - loss 0.18556494 - time (sec): 5.20 - samples/sec: 3523.73 - lr: 0.000028 - momentum: 0.000000
2023-10-17 09:36:41,807 epoch 2 - iter 105/152 - loss 0.18053346 - time (sec): 6.02 - samples/sec: 3513.61 - lr: 0.000028 - momentum: 0.000000
2023-10-17 09:36:42,670 epoch 2 - iter 120/152 - loss 0.18092533 - time (sec): 6.89 - samples/sec: 3560.07 - lr: 0.000027 - momentum: 0.000000
2023-10-17 09:36:43,530 epoch 2 - iter 135/152 - loss 0.17278558 - time (sec): 7.75 - samples/sec: 3580.87 - lr: 0.000027 - momentum: 0.000000
2023-10-17 09:36:44,376 epoch 2 - iter 150/152 - loss 0.17079577 - time (sec): 8.59 - samples/sec: 3571.90 - lr: 0.000027 - momentum: 0.000000
2023-10-17 09:36:44,475 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:44,475 EPOCH 2 done: loss 0.1696 - lr: 0.000027
2023-10-17 09:36:45,392 DEV : loss 0.13970671594142914 - f1-score (micro avg)  0.7763
2023-10-17 09:36:45,398 saving best model
2023-10-17 09:36:45,846 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:46,710 epoch 3 - iter 15/152 - loss 0.09358125 - time (sec): 0.86 - samples/sec: 3368.12 - lr: 0.000026 - momentum: 0.000000
2023-10-17 09:36:47,568 epoch 3 - iter 30/152 - loss 0.09697182 - time (sec): 1.72 - samples/sec: 3416.85 - lr: 0.000026 - momentum: 0.000000
2023-10-17 09:36:48,437 epoch 3 - iter 45/152 - loss 0.09722146 - time (sec): 2.59 - samples/sec: 3381.80 - lr: 0.000026 - momentum: 0.000000
2023-10-17 09:36:49,280 epoch 3 - iter 60/152 - loss 0.09059189 - time (sec): 3.43 - samples/sec: 3414.31 - lr: 0.000025 - momentum: 0.000000
2023-10-17 09:36:50,175 epoch 3 - iter 75/152 - loss 0.08518541 - time (sec): 4.33 - samples/sec: 3498.34 - lr: 0.000025 - momentum: 0.000000
2023-10-17 09:36:51,076 epoch 3 - iter 90/152 - loss 0.09661947 - time (sec): 5.23 - samples/sec: 3505.34 - lr: 0.000025 - momentum: 0.000000
2023-10-17 09:36:51,931 epoch 3 - iter 105/152 - loss 0.10037094 - time (sec): 6.08 - samples/sec: 3524.40 - lr: 0.000024 - momentum: 0.000000
2023-10-17 09:36:52,760 epoch 3 - iter 120/152 - loss 0.09624042 - time (sec): 6.91 - samples/sec: 3540.82 - lr: 0.000024 - momentum: 0.000000
2023-10-17 09:36:53,578 epoch 3 - iter 135/152 - loss 0.09198926 - time (sec): 7.73 - samples/sec: 3538.43 - lr: 0.000024 - momentum: 0.000000
2023-10-17 09:36:54,489 epoch 3 - iter 150/152 - loss 0.08944775 - time (sec): 8.64 - samples/sec: 3547.63 - lr: 0.000023 - momentum: 0.000000
2023-10-17 09:36:54,591 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:54,591 EPOCH 3 done: loss 0.0897 - lr: 0.000023
2023-10-17 09:36:55,531 DEV : loss 0.13742879033088684 - f1-score (micro avg)  0.8245
2023-10-17 09:36:55,538 saving best model
2023-10-17 09:36:56,022 ----------------------------------------------------------------------------------------------------
2023-10-17 09:36:56,879 epoch 4 - iter 15/152 - loss 0.03956629 - time (sec): 0.86 - samples/sec: 3634.93 - lr: 0.000023 - momentum: 0.000000
2023-10-17 09:36:57,724 epoch 4 - iter 30/152 - loss 0.05596716 - time (sec): 1.70 - samples/sec: 3605.37 - lr: 0.000023 - momentum: 0.000000
2023-10-17 09:36:58,546 epoch 4 - iter 45/152 - loss 0.06316567 - time (sec): 2.52 - samples/sec: 3561.13 - lr: 0.000022 - momentum: 0.000000
2023-10-17 09:36:59,461 epoch 4 - iter 60/152 - loss 0.06216934 - time (sec): 3.44 - samples/sec: 3598.96 - lr: 0.000022 - momentum: 0.000000
2023-10-17 09:37:00,333 epoch 4 - iter 75/152 - loss 0.05941341 - time (sec): 4.31 - samples/sec: 3549.57 - lr: 0.000022 - momentum: 0.000000
2023-10-17 09:37:01,339 epoch 4 - iter 90/152 - loss 0.05979395 - time (sec): 5.32 - samples/sec: 3425.34 - lr: 0.000021 - momentum: 0.000000
2023-10-17 09:37:02,210 epoch 4 - iter 105/152 - loss 0.06163013 - time (sec): 6.19 - samples/sec: 3460.81 - lr: 0.000021 - momentum: 0.000000
2023-10-17 09:37:03,064 epoch 4 - iter 120/152 - loss 0.06016428 - time (sec): 7.04 - samples/sec: 3488.96 - lr: 0.000021 - momentum: 0.000000
2023-10-17 09:37:03,947 epoch 4 - iter 135/152 - loss 0.06300382 - time (sec): 7.92 - samples/sec: 3490.01 - lr: 0.000020 - momentum: 0.000000
2023-10-17 09:37:04,785 epoch 4 - iter 150/152 - loss 0.06228708 - time (sec): 8.76 - samples/sec: 3504.62 - lr: 0.000020 - momentum: 0.000000
2023-10-17 09:37:04,891 ----------------------------------------------------------------------------------------------------
2023-10-17 09:37:04,891 EPOCH 4 done: loss 0.0623 - lr: 0.000020
2023-10-17 09:37:05,831 DEV : loss 0.1494779735803604 - f1-score (micro avg)  0.8282
2023-10-17 09:37:05,837 saving best model
2023-10-17 09:37:06,323 ----------------------------------------------------------------------------------------------------
2023-10-17 09:37:07,248 epoch 5 - iter 15/152 - loss 0.05545218 - time (sec): 0.92 - samples/sec: 3654.78 - lr: 0.000020 - momentum: 0.000000
2023-10-17 09:37:08,170 epoch 5 - iter 30/152 - loss 0.04238699 - time (sec): 1.85 - samples/sec: 3436.50 - lr: 0.000019 - momentum: 0.000000
2023-10-17 09:37:09,096 epoch 5 - iter 45/152 - loss 0.04725187 - time (sec): 2.77 - samples/sec: 3492.98 - lr: 0.000019 - momentum: 0.000000
2023-10-17 09:37:09,967 epoch 5 - iter 60/152 - loss 0.04013426 - time (sec): 3.64 - samples/sec: 3489.30 - lr: 0.000019 - momentum: 0.000000
2023-10-17 09:37:10,857 epoch 5 - iter 75/152 - loss 0.03634974 - time (sec): 4.53 - samples/sec: 3481.04 - lr: 0.000018 - momentum: 0.000000
2023-10-17 09:37:11,741 epoch 5 - iter 90/152 - loss 0.03798504 - time (sec): 5.42 - samples/sec: 3448.37 - lr: 0.000018 - momentum: 0.000000
2023-10-17 09:37:12,629 epoch 5 - iter 105/152 - loss 0.03712308 - time (sec): 6.30 - samples/sec: 3439.13 - lr: 0.000018 - momentum: 0.000000
2023-10-17 09:37:13,452 epoch 5 - iter 120/152 - loss 0.04227013 - time (sec): 7.13 - samples/sec: 3428.06 - lr: 0.000017 - momentum: 0.000000
2023-10-17 09:37:14,334 epoch 5 - iter 135/152 - loss 0.04112595 - time (sec): 8.01 - samples/sec: 3442.29 - lr: 0.000017 - momentum: 0.000000
2023-10-17 09:37:15,191 epoch 5 - iter 150/152 - loss 0.04377806 - time (sec): 8.87 - samples/sec: 3462.64 - lr: 0.000017 - momentum: 0.000000
2023-10-17 09:37:15,289 ----------------------------------------------------------------------------------------------------
2023-10-17 09:37:15,289 EPOCH 5 done: loss 0.0436 - lr: 0.000017
2023-10-17 09:37:16,234 DEV : loss 0.1704065203666687 - f1-score (micro avg)  0.8434
2023-10-17 09:37:16,241 saving best model
2023-10-17 09:37:16,697 ----------------------------------------------------------------------------------------------------
2023-10-17 09:37:17,588 epoch 6 - iter 15/152 - loss 0.04317289 - time (sec): 0.88 - samples/sec: 3518.38 - lr: 0.000016 - momentum: 0.000000
2023-10-17 09:37:18,416 epoch 6 - iter 30/152 - loss 0.03691780 - time (sec): 1.71 - samples/sec: 3462.62 - lr: 0.000016 - momentum: 0.000000
2023-10-17 09:37:19,300 epoch 6 - iter 45/152 - loss 0.03511291 - time (sec): 2.59 - samples/sec: 3430.87 - lr: 0.000016 - momentum: 0.000000
2023-10-17 09:37:20,183 epoch 6 - iter 60/152 - loss 0.03753407 - time (sec): 3.48 - samples/sec: 3432.90 - lr: 0.000015 - momentum: 0.000000
2023-10-17 09:37:21,052 epoch 6 - iter 75/152 - loss 0.03621585 - time (sec): 4.34 - samples/sec: 3482.89 - lr: 0.000015 - momentum: 0.000000
2023-10-17 09:37:21,890 epoch 6 - iter 90/152 - loss 0.03430368 - time (sec): 5.18 - samples/sec: 3495.93 - lr: 0.000015 - momentum: 0.000000
2023-10-17 09:37:22,787 epoch 6 - iter 105/152 - loss 0.04059258 - time (sec): 6.08 - samples/sec: 3504.70 - lr: 0.000014 - momentum: 0.000000
2023-10-17 09:37:23,646 epoch 6 - iter 120/152 - loss 0.03799652 - time (sec): 6.94 - samples/sec: 3498.07 - lr: 0.000014 - momentum: 0.000000
2023-10-17 09:37:24,486 epoch 6 - iter 135/152 - loss 0.03759158 - time (sec): 7.78 - samples/sec: 3520.77 - lr: 0.000014 - momentum: 0.000000
2023-10-17 09:37:25,379 epoch 6 - iter 150/152 - loss 0.03898740 - time (sec): 8.67 - samples/sec: 3535.40 - lr: 0.000013 - momentum: 0.000000
2023-10-17 09:37:25,472 ----------------------------------------------------------------------------------------------------
2023-10-17 09:37:25,472 EPOCH 6 done: loss 0.0392 - lr: 0.000013
2023-10-17 09:37:26,445 DEV : loss 0.17794041335582733 - f1-score (micro avg)  0.839
2023-10-17 09:37:26,453 ----------------------------------------------------------------------------------------------------
2023-10-17 09:37:27,356 epoch 7 - iter 15/152 - loss 0.01465965 - time (sec): 0.90 - samples/sec: 3112.14 - lr: 0.000013 - momentum: 0.000000
2023-10-17 09:37:28,224 epoch 7 - iter 30/152 - loss 0.01342575 - time (sec): 1.77 - samples/sec: 3298.14 - lr: 0.000013 - momentum: 0.000000
2023-10-17 09:37:29,082 epoch 7 - iter 45/152 - loss 0.01948712 - time (sec): 2.63 - samples/sec: 3395.28 - lr: 0.000012 - momentum: 0.000000
2023-10-17 09:37:29,937 epoch 7 - iter 60/152 - loss 0.02268211 - time (sec): 3.48 - samples/sec: 3401.47 - lr: 0.000012 - momentum: 0.000000
2023-10-17 09:37:30,759 epoch 7 - iter 75/152 - loss 0.02031838 - time (sec): 4.30 - samples/sec: 3481.55 - lr: 0.000012 - momentum: 0.000000
2023-10-17 09:37:31,605 epoch 7 - iter 90/152 - loss 0.01853079 - time (sec): 5.15 - samples/sec: 3495.72 - lr: 0.000011 - momentum: 0.000000
2023-10-17 09:37:32,460 epoch 7 - iter 105/152 - loss 0.02027409 - time (sec): 6.00 - samples/sec: 3505.39 - lr: 0.000011 - momentum: 0.000000
2023-10-17 09:37:33,390 epoch 7 - iter 120/152 - loss 0.02176488 - time (sec): 6.93 - samples/sec: 3522.89 - lr: 0.000011 - momentum: 0.000000
2023-10-17 09:37:34,284 epoch 7 - iter 135/152 - loss 0.02344965 - time (sec): 7.83 - samples/sec: 3542.75 - lr: 0.000010 - momentum: 0.000000
2023-10-17 09:37:35,098 epoch 7 - iter 150/152 - loss 0.02710869 - time (sec): 8.64 - samples/sec: 3544.50 - lr: 0.000010 - momentum: 0.000000
2023-10-17 09:37:35,204 ----------------------------------------------------------------------------------------------------
2023-10-17 09:37:35,204 EPOCH 7 done: loss 0.0273 - lr: 0.000010
2023-10-17 09:37:36,183 DEV : loss 0.18339850008487701 - f1-score (micro avg)  0.8421
2023-10-17 09:37:36,191 ----------------------------------------------------------------------------------------------------
2023-10-17 09:37:37,052 epoch 8 - iter 15/152 - loss 0.01167967 - time (sec): 0.86 - samples/sec: 3917.73 - lr: 0.000010 - momentum: 0.000000
2023-10-17 09:37:37,918 epoch 8 - iter 30/152 - loss 0.01022357 - time (sec): 1.73 - samples/sec: 3699.27 - lr: 0.000009 - momentum: 0.000000
2023-10-17 09:37:38,811 epoch 8 - iter 45/152 - loss 0.01816524 - time (sec): 2.62 - samples/sec: 3626.56 - lr: 0.000009 - momentum: 0.000000
2023-10-17 09:37:39,640 epoch 8 - iter 60/152 - loss 0.01610311 - time (sec): 3.45 - samples/sec: 3532.16 - lr: 0.000009 - momentum: 0.000000
2023-10-17 09:37:40,532 epoch 8 - iter 75/152 - loss 0.01399500 - time (sec): 4.34 - samples/sec: 3577.81 - lr: 0.000008 - momentum: 0.000000
2023-10-17 09:37:41,328 epoch 8 - iter 90/152 - loss 0.01508785 - time (sec): 5.14 - samples/sec: 3587.85 - lr: 0.000008 - momentum: 0.000000
2023-10-17 09:37:42,196 epoch 8 - iter 105/152 - loss 0.01972651 - time (sec): 6.00 - samples/sec: 3563.80 - lr: 0.000008 - momentum: 0.000000
2023-10-17 09:37:43,084 epoch 8 - iter 120/152 - loss 0.02152978 - time (sec): 6.89 - samples/sec: 3557.71 - lr: 0.000007 - momentum: 0.000000
2023-10-17 09:37:43,960 epoch 8 - iter 135/152 - loss 0.02068304 - time (sec): 7.77 - samples/sec: 3555.58 - lr: 0.000007 - momentum: 0.000000
2023-10-17 09:37:44,816 epoch 8 - iter 150/152 - loss 0.02075768 - time (sec): 8.62 - samples/sec: 3550.64 - lr: 0.000007 - momentum: 0.000000
2023-10-17 09:37:44,924 ----------------------------------------------------------------------------------------------------
2023-10-17 09:37:44,924 EPOCH 8 done: loss 0.0205 - lr: 0.000007
2023-10-17 09:37:45,870 DEV : loss 0.19150298833847046 - f1-score (micro avg)  0.8436
2023-10-17 09:37:45,876 saving best model
2023-10-17 09:37:46,342 ----------------------------------------------------------------------------------------------------
2023-10-17 09:37:47,201 epoch 9 - iter 15/152 - loss 0.01688113 - time (sec): 0.86 - samples/sec: 3585.02 - lr: 0.000006 - momentum: 0.000000
2023-10-17 09:37:48,035 epoch 9 - iter 30/152 - loss 0.00892330 - time (sec): 1.69 - samples/sec: 3535.34 - lr: 0.000006 - momentum: 0.000000
2023-10-17 09:37:48,912 epoch 9 - iter 45/152 - loss 0.01524391 - time (sec): 2.57 - samples/sec: 3566.72 - lr: 0.000006 - momentum: 0.000000
2023-10-17 09:37:49,759 epoch 9 - iter 60/152 - loss 0.01537673 - time (sec): 3.42 - samples/sec: 3525.94 - lr: 0.000005 - momentum: 0.000000
2023-10-17 09:37:50,636 epoch 9 - iter 75/152 - loss 0.01573533 - time (sec): 4.29 - samples/sec: 3549.94 - lr: 0.000005 - momentum: 0.000000
2023-10-17 09:37:51,497 epoch 9 - iter 90/152 - loss 0.01569790 - time (sec): 5.15 - samples/sec: 3561.83 - lr: 0.000005 - momentum: 0.000000
2023-10-17 09:37:52,387 epoch 9 - iter 105/152 - loss 0.01417753 - time (sec): 6.04 - samples/sec: 3527.35 - lr: 0.000004 - momentum: 0.000000
2023-10-17 09:37:53,184 epoch 9 - iter 120/152 - loss 0.01521950 - time (sec): 6.84 - samples/sec: 3546.82 - lr: 0.000004 - momentum: 0.000000
2023-10-17 09:37:54,034 epoch 9 - iter 135/152 - loss 0.01501499 - time (sec): 7.69 - samples/sec: 3567.29 - lr: 0.000004 - momentum: 0.000000
2023-10-17 09:37:54,900 epoch 9 - iter 150/152 - loss 0.01607239 - time (sec): 8.56 - samples/sec: 3582.08 - lr: 0.000004 - momentum: 0.000000
2023-10-17 09:37:55,000 ----------------------------------------------------------------------------------------------------
2023-10-17 09:37:55,000 EPOCH 9 done: loss 0.0159 - lr: 0.000004
2023-10-17 09:37:55,939 DEV : loss 0.19435930252075195 - f1-score (micro avg)  0.8479
2023-10-17 09:37:55,945 saving best model
2023-10-17 09:37:56,410 ----------------------------------------------------------------------------------------------------
2023-10-17 09:37:57,241 epoch 10 - iter 15/152 - loss 0.01021824 - time (sec): 0.83 - samples/sec: 3542.39 - lr: 0.000003 - momentum: 0.000000
2023-10-17 09:37:58,114 epoch 10 - iter 30/152 - loss 0.01670466 - time (sec): 1.70 - samples/sec: 3509.32 - lr: 0.000003 - momentum: 0.000000
2023-10-17 09:37:58,988 epoch 10 - iter 45/152 - loss 0.01789261 - time (sec): 2.58 - samples/sec: 3597.82 - lr: 0.000002 - momentum: 0.000000
2023-10-17 09:37:59,849 epoch 10 - iter 60/152 - loss 0.02154099 - time (sec): 3.44 - samples/sec: 3547.31 - lr: 0.000002 - momentum: 0.000000
2023-10-17 09:38:00,669 epoch 10 - iter 75/152 - loss 0.01827148 - time (sec): 4.26 - samples/sec: 3556.10 - lr: 0.000002 - momentum: 0.000000
2023-10-17 09:38:01,580 epoch 10 - iter 90/152 - loss 0.01773986 - time (sec): 5.17 - samples/sec: 3509.28 - lr: 0.000002 - momentum: 0.000000
2023-10-17 09:38:02,467 epoch 10 - iter 105/152 - loss 0.01550723 - time (sec): 6.06 - samples/sec: 3526.34 - lr: 0.000001 - momentum: 0.000000
2023-10-17 09:38:03,330 epoch 10 - iter 120/152 - loss 0.01531261 - time (sec): 6.92 - samples/sec: 3517.18 - lr: 0.000001 - momentum: 0.000000
2023-10-17 09:38:04,227 epoch 10 - iter 135/152 - loss 0.01532677 - time (sec): 7.82 - samples/sec: 3505.78 - lr: 0.000001 - momentum: 0.000000
2023-10-17 09:38:05,120 epoch 10 - iter 150/152 - loss 0.01646360 - time (sec): 8.71 - samples/sec: 3515.50 - lr: 0.000000 - momentum: 0.000000
2023-10-17 09:38:05,232 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:05,232 EPOCH 10 done: loss 0.0164 - lr: 0.000000
2023-10-17 09:38:06,206 DEV : loss 0.19792957603931427 - f1-score (micro avg)  0.8419
2023-10-17 09:38:06,568 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:06,570 Loading model from best epoch ...
2023-10-17 09:38:08,115 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-17 09:38:09,020 
Results:
- F-score (micro) 0.8368
- F-score (macro) 0.67
- Accuracy 0.7282

By class:
              precision    recall  f1-score   support

       scope     0.7898    0.8212    0.8052       151
        work     0.7810    0.8632    0.8200        95
        pers     0.8932    0.9583    0.9246        96
         loc     1.0000    0.6667    0.8000         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.8130    0.8621    0.8368       348
   macro avg     0.6928    0.6619    0.6700       348
weighted avg     0.8109    0.8621    0.8352       348

2023-10-17 09:38:09,021 ----------------------------------------------------------------------------------------------------