from transformers import PretrainedConfig class SatDINOConfig(PretrainedConfig): model_type = "satdino" def __init__( self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=1e-6, use_xformers=False, pos_encoding_method="learnable", **kwargs ): self.img_size = img_size self.patch_size = patch_size self.in_chans = in_chans self.num_classes = num_classes self.embed_dim = embed_dim self.depth = depth self.num_heads = num_heads self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.qk_scale = qk_scale self.drop_rate = drop_rate self.attn_drop_rate = attn_drop_rate self.drop_path_rate = drop_path_rate self.norm_layer = norm_layer self.use_xformers = use_xformers self.pos_encoding_method = pos_encoding_method super().__init__(**kwargs)