--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: stulcrad/Robeczech-PRETRAINED4-CERED3 tags: - generated_from_trainer datasets: - generator metrics: - accuracy model-index: - name: Robeczech-PRETRAINED43-CERED2 results: [] --- # Robeczech-PRETRAINED43-CERED2 This model is a fine-tuned version of [stulcrad/Robeczech-PRETRAINED4-CERED3](https://huggingface.co/stulcrad/Robeczech-PRETRAINED4-CERED3) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.1137 - Accuracy: 0.8807 - Micro Precision: 0.8807 - Micro Recall: 0.8807 - Micro F1: 0.8807 - Macro Precision: 0.8503 - Macro Recall: 0.8424 - Macro F1: 0.8426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 24 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:| | 0.4181 | 1.0 | 15074 | 0.5844 | 0.8550 | 0.8550 | 0.8550 | 0.8550 | 0.8202 | 0.7858 | 0.7946 | | 0.3727 | 2.0 | 30148 | 0.5572 | 0.8620 | 0.8620 | 0.8620 | 0.8620 | 0.8293 | 0.8058 | 0.8102 | | 0.282 | 3.0 | 45222 | 0.6841 | 0.8567 | 0.8567 | 0.8567 | 0.8567 | 0.8174 | 0.8071 | 0.8010 | | 0.2209 | 4.0 | 60296 | 0.6510 | 0.8672 | 0.8672 | 0.8672 | 0.8672 | 0.8171 | 0.8205 | 0.8132 | | 0.1918 | 5.0 | 75370 | 0.7609 | 0.8665 | 0.8665 | 0.8665 | 0.8665 | 0.8254 | 0.8171 | 0.8162 | | 0.13 | 6.0 | 90444 | 0.8197 | 0.8724 | 0.8724 | 0.8724 | 0.8724 | 0.8347 | 0.8345 | 0.8302 | | 0.0959 | 7.0 | 105518 | 0.8901 | 0.8721 | 0.8721 | 0.8721 | 0.8721 | 0.8304 | 0.8256 | 0.8236 | | 0.0799 | 8.0 | 120592 | 1.0162 | 0.8749 | 0.8749 | 0.8749 | 0.8749 | 0.8364 | 0.8361 | 0.8316 | | 0.0454 | 9.0 | 135666 | 1.0664 | 0.8747 | 0.8747 | 0.8747 | 0.8747 | 0.8280 | 0.8363 | 0.8284 | | 0.0274 | 10.0 | 150740 | 1.1455 | 0.8768 | 0.8768 | 0.8768 | 0.8768 | 0.8326 | 0.8369 | 0.8313 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3