--- language: - en library_name: transformers license: apache-2.0 pipeline_tag: text-generation tags: - unsloth - LoRA datasets: - TIGER-Lab/MathInstruct base_model: - Qwen/Qwen2.5-7B-Instruct --- These are the LoRA adapters for model Komodo-7B-Instruct. https://huggingface.co/suayptalha/Komodo-7B-Instruct Suggested Usage: ```py model_name = "Qwen/Qwen2.5-7b-Instruct" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16 ) model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.float16, quantization_config=bnb_config ) tokenizer = AutoTokenizer.from_pretrained(model_name) adapter_path = "suayptalha/Komodo-LoRA" model = PeftModel.from_pretrained(model, adapter_path) example_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" inputs = tokenizer( [ example_prompt.format( "", #Your question here "", #Given input here "", #Output (for training) ) ], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True) tokenizer.batch_decode(outputs) ```