suchirsalhan commited on
Commit
b517be5
·
verified ·
1 Parent(s): 3d62058

Create modeling_ltgbert.py

Browse files
Files changed (1) hide show
  1. modeling_ltgbert.py +827 -0
modeling_ltgbert.py ADDED
@@ -0,0 +1,827 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from torch.utils import checkpoint
8
+
9
+ from .configuration_ltgbert import LtgbertConfig
10
+ from transformers.modeling_utils import PreTrainedModel
11
+ from transformers.activations import gelu_new
12
+ from transformers.modeling_outputs import (
13
+ MaskedLMOutput,
14
+ MultipleChoiceModelOutput,
15
+ QuestionAnsweringModelOutput,
16
+ SequenceClassifierOutput,
17
+ TokenClassifierOutput,
18
+ BaseModelOutput,
19
+ CausalLMOutput
20
+ )
21
+ from transformers.pytorch_utils import softmax_backward_data
22
+
23
+
24
+ class InPlaceSetSlice(torch.autograd.Function):
25
+ @staticmethod
26
+ def forward(ctx, full_tensor, last_slice, x_idx, x_val):
27
+ full_tensor[x_idx] = x_val
28
+ ctx.x_idx = x_idx
29
+ ret = torch.Tensor().to(full_tensor.device)
30
+ ret.set_(full_tensor[:x_idx + 1])
31
+ return ret
32
+
33
+ @staticmethod
34
+ def backward(ctx, grad_out):
35
+ if ctx.x_idx == 0:
36
+ return None, None, None, grad_out[ctx.x_idx]
37
+ else:
38
+ return None, grad_out[:ctx.x_idx], None, grad_out[ctx.x_idx]
39
+
40
+
41
+ def apply_inplace_set(x_acc, x_idx, x_val):
42
+ full_tensor, last_slice = x_acc
43
+ new_slice = InPlaceSetSlice.apply(full_tensor, last_slice, x_idx, x_val)
44
+ return full_tensor, new_slice
45
+
46
+
47
+ class DWAModules(torch.nn.Module):
48
+ def __init__(self, hidden_size, n_blocks):
49
+ super().__init__()
50
+ self.n_blocks = n_blocks
51
+ self.alphas = nn.ParameterList([nn.Parameter(torch.zeros(i + 2)) for i in range(n_blocks)])
52
+ self.accumulator = None
53
+ self._init_weights()
54
+
55
+ def _init_weights(self):
56
+ for module in self.alphas:
57
+ module.data.zero_()
58
+ module.data[-1] = 1.0
59
+
60
+ def init_accumulator(self, x):
61
+ self.accumulator = (torch.zeros((self.n_blocks + 1, *x.shape), device=x.device, dtype=x.dtype), None)
62
+ self.accumulator = apply_inplace_set(self.accumulator, 0, x)
63
+
64
+ def forward(self, x, block_idx):
65
+ assert self.accumulator is not None, "`init_accumulator(x)` needs to be called first"
66
+ self.accumulator = apply_inplace_set(
67
+ self.accumulator,
68
+ block_idx + 1,
69
+ x
70
+ )
71
+ x = torch.tensordot(self.alphas[block_idx], self.accumulator[1], dims=1)
72
+ return x
73
+
74
+
75
+ class Encoder(nn.Module):
76
+ def __init__(self, config):
77
+ super().__init__()
78
+ self.attention_layers = nn.ModuleList([Attention(config) for _ in range(config.num_hidden_layers)])
79
+ self.mlp_layers = nn.ModuleList([FeedForward(config) for _ in range(config.num_hidden_layers)])
80
+ self.dwa_modules = DWAModules(config.hidden_size, config.num_hidden_layers * 2)
81
+
82
+ for i, layer in enumerate(self.mlp_layers):
83
+ layer.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
84
+ layer.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
85
+
86
+ def forward(self, x, attention_mask, relative_embedding):
87
+ hidden_states, attention_probs = [x], []
88
+
89
+ self.dwa_modules.init_accumulator(x)
90
+ for i, (attention_layer, mlp_layer) in enumerate(zip(self.attention_layers, self.mlp_layers)):
91
+ attention_output, attention_p = attention_layer(x, attention_mask, relative_embedding)
92
+ x = x + attention_output
93
+ x = self.dwa_modules(x, block_idx=i * 2)
94
+
95
+ x = x + mlp_layer(x)
96
+ x = self.dwa_modules(x, block_idx=i * 2 + 1)
97
+
98
+ hidden_states.append(x)
99
+ attention_probs.append(attention_p)
100
+
101
+ return hidden_states, attention_probs
102
+
103
+
104
+ class MaskClassifier(nn.Module):
105
+ def __init__(self, config, subword_embedding):
106
+ super().__init__()
107
+ self.nonlinearity = nn.Sequential(
108
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
109
+ nn.Linear(config.hidden_size, config.hidden_size),
110
+ nn.GELU(),
111
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
112
+ nn.Dropout(config.hidden_dropout_prob),
113
+ nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
114
+ )
115
+
116
+ def forward(self, x, masked_lm_labels=None):
117
+ if masked_lm_labels is not None:
118
+ x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
119
+ x = self.nonlinearity(x)
120
+ return x
121
+
122
+
123
+ # class EncoderLayer(nn.Module):
124
+ # def __init__(self, config):
125
+ # super().__init__()
126
+ # self.attention = Attention(config)
127
+ # self.mlp = FeedForward(config)
128
+
129
+ # def forward(self, x, padding_mask, relative_embedding):
130
+ # attention_output, attention_probs = self.attention(x, padding_mask, relative_embedding)
131
+ # x = x + attention_output
132
+ # x = x + self.mlp(x)
133
+ # return x, attention_probs
134
+
135
+
136
+ class GeGLU(nn.Module):
137
+ def forward(self, x):
138
+ x, gate = x.chunk(2, dim=-1)
139
+ x = x * gelu_new(gate)
140
+ return x
141
+
142
+
143
+ class FeedForward(nn.Module):
144
+ def __init__(self, config):
145
+ super().__init__()
146
+ self.mlp = nn.Sequential(
147
+ nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
148
+ nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
149
+ GeGLU(),
150
+ nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
151
+ nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
152
+ nn.Dropout(config.hidden_dropout_prob)
153
+ )
154
+
155
+ def forward(self, x):
156
+ return self.mlp(x)
157
+
158
+
159
+ class MaskedSoftmax(torch.autograd.Function):
160
+ @staticmethod
161
+ def forward(self, x, mask, dim):
162
+ self.dim = dim
163
+
164
+ x.masked_fill_(mask, float('-inf'))
165
+ x = torch.softmax(x, self.dim)
166
+ x.masked_fill_(mask, 0.0)
167
+ self.save_for_backward(x)
168
+ return x
169
+
170
+ @staticmethod
171
+ def backward(self, grad_output):
172
+ output, = self.saved_tensors
173
+ input_grad = softmax_backward_data(self, grad_output, output, self.dim, output)
174
+ return input_grad, None, None
175
+
176
+
177
+ class Attention(nn.Module):
178
+ def __init__(self, config):
179
+ super().__init__()
180
+
181
+ self.config = config
182
+
183
+ if config.hidden_size % config.num_attention_heads != 0:
184
+ raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
185
+
186
+ self.hidden_size = config.hidden_size
187
+ self.num_heads = config.num_attention_heads
188
+ self.head_size = config.hidden_size // config.num_attention_heads
189
+
190
+ self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
191
+ self.in_proj_vg = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
192
+ self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
193
+
194
+ self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
195
+ self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
196
+
197
+ position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
198
+ - torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
199
+ position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
200
+ position_indices = config.position_bucket_size - 1 + position_indices
201
+ self.register_buffer("position_indices", position_indices, persistent=True)
202
+
203
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
204
+ self.scale = 1.0 / math.sqrt(3 * self.head_size)
205
+
206
+ def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
207
+ sign = torch.sign(relative_pos)
208
+ mid = bucket_size // 2
209
+ abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
210
+ log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
211
+ bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
212
+ return bucket_pos
213
+
214
+ def forward(self, hidden_states, attention_mask, relative_embedding):
215
+ key_len, batch_size, _ = hidden_states.size()
216
+ query_len = key_len
217
+
218
+ if self.position_indices.size(0) < query_len:
219
+ position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
220
+ - torch.arange(query_len, dtype=torch.long).unsqueeze(0)
221
+ position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
222
+ position_indices = self.config.position_bucket_size - 1 + position_indices
223
+ self.position_indices = position_indices.to(hidden_states.device)
224
+
225
+ hidden_states = self.pre_layer_norm(hidden_states)
226
+
227
+ query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
228
+ value, gate = self.in_proj_vg(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
229
+ gate = F.gelu(gate)
230
+
231
+ query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
232
+ key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
233
+ value = value.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
234
+
235
+ attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
236
+
237
+ query_pos, key_pos = self.in_proj_qk(self.dropout(relative_embedding)).chunk(2, dim=-1) # shape: [2T-1, D]
238
+ query_pos = query_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
239
+ key_pos = key_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
240
+
241
+ query = query.view(batch_size, self.num_heads, query_len, self.head_size)
242
+ key = key.view(batch_size, self.num_heads, query_len, self.head_size)
243
+
244
+ attention_c_p = torch.einsum("bhqd,khd->bhqk", query, key_pos.squeeze(1) * self.scale)
245
+ attention_p_c = torch.einsum("bhkd,qhd->bhqk", key * self.scale, query_pos.squeeze(1))
246
+
247
+ position_indices = self.position_indices[:query_len, :key_len].expand(batch_size, self.num_heads, -1, -1)
248
+ attention_c_p = attention_c_p.gather(3, position_indices)
249
+ attention_p_c = attention_p_c.gather(2, position_indices)
250
+
251
+ attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
252
+ attention_scores.add_(attention_c_p)
253
+ attention_scores.add_(attention_p_c)
254
+
255
+ attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
256
+
257
+ attention_probs = self.dropout(attention_probs)
258
+ context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
259
+ context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
260
+ context = context * gate
261
+ context = self.post_layer_norm(context)
262
+ context = self.out_proj(context)
263
+ context = self.dropout(context)
264
+
265
+ return context, attention_probs.detach()
266
+
267
+
268
+ class Embedding(nn.Module):
269
+ def __init__(self, config):
270
+ super().__init__()
271
+ self.hidden_size = config.hidden_size
272
+
273
+ self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
274
+ self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
275
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
276
+
277
+ self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
278
+ self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
279
+
280
+ def forward(self, input_ids):
281
+ word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
282
+ relative_embeddings = self.relative_layer_norm(self.relative_embedding)
283
+ return word_embedding, relative_embeddings
284
+
285
+
286
+ #
287
+ # HuggingFace wrappers
288
+ #
289
+
290
+ class LtgbertPreTrainedModel(PreTrainedModel):
291
+ config_class = LtgbertConfig
292
+ supports_gradient_checkpointing = False
293
+
294
+ def _set_gradient_checkpointing(self, module, value=False):
295
+ raise NotImplementedError("Gradient checkpointing is not supported by this model")
296
+
297
+ def _init_weights(self, module):
298
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
299
+
300
+ if isinstance(module, nn.Linear):
301
+ nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
302
+ if module.bias is not None:
303
+ module.bias.data.zero_()
304
+ elif isinstance(module, nn.Embedding):
305
+ nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
306
+ elif isinstance(module, nn.LayerNorm):
307
+ module.bias.data.zero_()
308
+ module.weight.data.fill_(1.0)
309
+
310
+
311
+ class LtgbertModel(LtgbertPreTrainedModel):
312
+ def __init__(self, config, add_mlm_layer=False, **kwargs):
313
+ super().__init__(config, **kwargs)
314
+ self.config = config
315
+ self.hidden_size = config.hidden_size
316
+
317
+ self.embedding = Embedding(config)
318
+ self.transformer = Encoder(config)
319
+ self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None
320
+
321
+
322
+ def get_input_embeddings(self):
323
+ return self.embedding.word_embedding
324
+
325
+ def set_input_embeddings(self, value):
326
+ self.embedding.word_embedding = value
327
+
328
+ def get_contextualized_embeddings(
329
+ self,
330
+ input_ids: Optional[torch.Tensor] = None,
331
+ attention_mask: Optional[torch.Tensor] = None
332
+ ) -> List[torch.Tensor]:
333
+ if input_ids is not None:
334
+ input_shape = input_ids.size()
335
+ else:
336
+ raise ValueError("You have to specify input_ids")
337
+
338
+ batch_size, seq_length = input_shape
339
+ device = input_ids.device
340
+
341
+ if attention_mask is None:
342
+ attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
343
+ else:
344
+ attention_mask = ~attention_mask.bool()
345
+
346
+ if self.config.is_decoder:
347
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | torch.triu(torch.ones(seq_length, seq_length, dtype=torch.bool, device=device), 1).unsqueeze(0).unsqueeze(0)
348
+ else:
349
+ if len(attention_mask.size()) == 2:
350
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
351
+ elif len(attention_mask.size()) == 3:
352
+ attention_mask = attention_mask.unsqueeze(1)
353
+
354
+ static_embeddings, relative_embedding = self.embedding(input_ids.t())
355
+ contextualized_embeddings, attention_probs = self.transformer(static_embeddings, attention_mask, relative_embedding)
356
+ contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
357
+ last_layer = contextualized_embeddings[-1]
358
+ contextualized_embeddings = [contextualized_embeddings[0]] + [
359
+ contextualized_embeddings[i] - contextualized_embeddings[i - 1]
360
+ for i in range(1, len(contextualized_embeddings))
361
+ ]
362
+ return last_layer, contextualized_embeddings, attention_probs
363
+
364
+ def forward(
365
+ self,
366
+ input_ids: Optional[torch.Tensor] = None,
367
+ attention_mask: Optional[torch.Tensor] = None,
368
+ token_type_ids: Optional[torch.Tensor] = None,
369
+ position_ids: Optional[torch.Tensor] = None,
370
+ output_hidden_states: Optional[bool] = None,
371
+ output_attentions: Optional[bool] = None,
372
+ return_dict: Optional[bool] = None,
373
+ **kwargs
374
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
375
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
376
+
377
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
378
+
379
+ if not return_dict:
380
+ return (
381
+ sequence_output,
382
+ *([contextualized_embeddings] if output_hidden_states else []),
383
+ *([attention_probs] if output_attentions else [])
384
+ )
385
+
386
+ return BaseModelOutput(
387
+ last_hidden_state=sequence_output,
388
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
389
+ attentions=attention_probs if output_attentions else None
390
+ )
391
+
392
+
393
+ class LtgbertForMaskedLM(LtgbertModel):
394
+ _keys_to_ignore_on_load_unexpected = ["head"]
395
+
396
+ def __init__(self, config, **kwargs):
397
+ super().__init__(config, add_mlm_layer=True, **kwargs)
398
+
399
+ def get_output_embeddings(self):
400
+ return self.classifier.nonlinearity[-1].weight
401
+
402
+ def set_output_embeddings(self, new_embeddings):
403
+ self.classifier.nonlinearity[-1].weight = new_embeddings
404
+
405
+ def forward(
406
+ self,
407
+ input_ids: Optional[torch.Tensor] = None,
408
+ attention_mask: Optional[torch.Tensor] = None,
409
+ token_type_ids: Optional[torch.Tensor] = None,
410
+ position_ids: Optional[torch.Tensor] = None,
411
+ output_hidden_states: Optional[bool] = None,
412
+ output_attentions: Optional[bool] = None,
413
+ return_dict: Optional[bool] = None,
414
+ labels: Optional[torch.LongTensor] = None,
415
+ **kwargs
416
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
417
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
418
+
419
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
420
+ subword_prediction = self.classifier(sequence_output)
421
+ # subword_prediction[:, :, :16+1] = float("-inf")
422
+
423
+ masked_lm_loss = None
424
+ if labels is not None:
425
+ labels_flatten = labels[:, 1:].flatten()
426
+ subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
427
+ masked_lm_loss = F.cross_entropy(subword_prediction_flatten, labels_flatten)
428
+
429
+ if not return_dict:
430
+ output = (
431
+ subword_prediction,
432
+ *([contextualized_embeddings] if output_hidden_states else []),
433
+ *([attention_probs] if output_attentions else [])
434
+ )
435
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
436
+
437
+ return MaskedLMOutput(
438
+ loss=masked_lm_loss,
439
+ logits=subword_prediction,
440
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
441
+ attentions=attention_probs if output_attentions else None
442
+ )
443
+
444
+
445
+ class Classifier(nn.Module):
446
+ def __init__(self, config, num_labels: int):
447
+ super().__init__()
448
+
449
+ self.temperature = config.temperature
450
+ drop_out = getattr(config, "cls_dropout", None)
451
+ drop_out = config.hidden_dropout_prob if drop_out is None else drop_out
452
+
453
+ self.nonlinearity = nn.Sequential(
454
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
455
+ nn.Linear(config.hidden_size, config.hidden_size),
456
+ nn.GELU(),
457
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
458
+ nn.Dropout(drop_out),
459
+ nn.Linear(config.hidden_size, num_labels)
460
+ )
461
+
462
+ def forward(self, x):
463
+ x = self.nonlinearity(x) / self.temperature
464
+ return x
465
+
466
+
467
+ class LtgbertForCausalLM(LtgbertModel):
468
+ _keys_to_ignore_on_load_unexpected = ["head"]
469
+
470
+ def __init__(self, config, **kwargs):
471
+ config.is_decoder = True
472
+ super().__init__(config, add_mlm_layer=True, **kwargs)
473
+
474
+ def get_output_embeddings(self):
475
+ return self.classifier.nonlinearity[-1].weight
476
+
477
+ def set_output_embeddings(self, new_embeddings):
478
+ self.classifier.nonlinearity[-1].weight = new_embeddings
479
+
480
+ def get_input_embeddings(self):
481
+ return self.embedding.word_embedding
482
+
483
+ def set_input_embeddings(self, value):
484
+ self.embedding.word_embedding = value
485
+
486
+ def set_decoder(self, decoder):
487
+ self.transformer = decoder
488
+
489
+ def get_decoder(self):
490
+ return self.transformer
491
+
492
+ def can_generate(self):
493
+ return True
494
+
495
+ def forward(
496
+ self,
497
+ input_ids: torch.LongTensor = None,
498
+ attention_mask: Optional[torch.Tensor] = None,
499
+ position_ids: Optional[torch.LongTensor] = None,
500
+ token_type_ids: Optional[torch.Tensor] = None,
501
+ past_key_values = None,
502
+ inputs_embeds: Optional[torch.FloatTensor] = None,
503
+ labels: Optional[torch.LongTensor] = None,
504
+ use_cache: Optional[bool] = None,
505
+ cache_position: Optional[torch.LongTensor] = None,
506
+ output_attentions: Optional[bool] = None,
507
+ output_hidden_states: Optional[bool] = None,
508
+ return_dict: Optional[bool] = None
509
+ ) -> Union[Tuple, CausalLMOutput]:
510
+
511
+ assert inputs_embeds is None, "inputs_embeds is not supported for now"
512
+ assert past_key_values is None, "past_key_values is not supported for now"
513
+ assert not use_cache, "use_cache is not supported for now"
514
+ # assert cache_position is None, "cache_position is not supported for now"
515
+
516
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
517
+ subword_prediction = self.classifier(sequence_output)
518
+ # subword_prediction[:, :, :16+1] = float("-inf")
519
+
520
+ masked_lm_loss = None
521
+ if labels is not None:
522
+ labels_flatten = labels[:, 1:].flatten()
523
+ subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
524
+ masked_lm_loss = F.cross_entropy(subword_prediction_flatten, labels_flatten)
525
+
526
+ if not return_dict:
527
+ output = (
528
+ subword_prediction,
529
+ *([contextualized_embeddings] if output_hidden_states else []),
530
+ *([attention_probs] if output_attentions else [])
531
+ )
532
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
533
+
534
+ return CausalLMOutput(
535
+ loss=masked_lm_loss,
536
+ logits=subword_prediction,
537
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
538
+ attentions=attention_probs if output_attentions else None
539
+ )
540
+
541
+
542
+ def prepare_inputs_for_generation(
543
+ self,
544
+ input_ids,
545
+ past_key_values=None,
546
+ attention_mask=None,
547
+ inputs_embeds=None,
548
+ cache_position=None,
549
+ position_ids=None,
550
+ use_cache=True,
551
+ num_logits_to_keep=None,
552
+ **kwargs,
553
+ ):
554
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
555
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
556
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
557
+ if past_key_values is not None:
558
+ if inputs_embeds is not None: # Exception 1
559
+ input_ids = input_ids[:, -cache_position.shape[0] :]
560
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
561
+ input_ids = input_ids[:, cache_position]
562
+
563
+ if attention_mask is not None and position_ids is None:
564
+ # create position_ids on the fly for batch generation
565
+ position_ids = attention_mask.long().cumsum(-1) - 1
566
+ position_ids.masked_fill_(attention_mask == 0, 1)
567
+ if past_key_values:
568
+ position_ids = position_ids[:, -input_ids.shape[1] :]
569
+
570
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
571
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
572
+
573
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
574
+ if inputs_embeds is not None and cache_position[0] == 0:
575
+ model_inputs = {"inputs_embeds": inputs_embeds}
576
+ else:
577
+ model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
578
+
579
+ if num_logits_to_keep is not None:
580
+ model_inputs["num_logits_to_keep"] = num_logits_to_keep
581
+
582
+ model_inputs.update(
583
+ {
584
+ "position_ids": position_ids,
585
+ "cache_position": cache_position,
586
+ "past_key_values": past_key_values,
587
+ "use_cache": use_cache,
588
+ "attention_mask": attention_mask,
589
+ }
590
+ )
591
+ return model_inputs
592
+
593
+
594
+
595
+ class LtgbertForSequenceClassification(LtgbertModel):
596
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
597
+ _keys_to_ignore_on_load_missing = ["head"]
598
+
599
+ def __init__(self, config, **kwargs):
600
+ super().__init__(config, add_mlm_layer=False, **kwargs)
601
+
602
+ self.num_labels = config.num_labels
603
+ self.head = Classifier(config, self.num_labels)
604
+
605
+ def forward(
606
+ self,
607
+ input_ids: Optional[torch.Tensor] = None,
608
+ attention_mask: Optional[torch.Tensor] = None,
609
+ token_type_ids: Optional[torch.Tensor] = None,
610
+ position_ids: Optional[torch.Tensor] = None,
611
+ output_attentions: Optional[bool] = None,
612
+ output_hidden_states: Optional[bool] = None,
613
+ return_dict: Optional[bool] = None,
614
+ labels: Optional[torch.LongTensor] = None,
615
+ **kwargs
616
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
617
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
618
+
619
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
620
+ logits = self.head(sequence_output[:, 0, :])
621
+
622
+ loss = None
623
+ if labels is not None:
624
+ if self.config.problem_type is None:
625
+ if self.num_labels == 1:
626
+ self.config.problem_type = "regression"
627
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
628
+ self.config.problem_type = "single_label_classification"
629
+ else:
630
+ self.config.problem_type = "multi_label_classification"
631
+
632
+ if self.config.problem_type == "regression":
633
+ loss_fct = nn.MSELoss()
634
+ if self.num_labels == 1:
635
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
636
+ else:
637
+ loss = loss_fct(logits, labels)
638
+ elif self.config.problem_type == "single_label_classification":
639
+ loss_fct = nn.CrossEntropyLoss()
640
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
641
+ elif self.config.problem_type == "multi_label_classification":
642
+ loss_fct = nn.BCEWithLogitsLoss()
643
+ loss = loss_fct(logits, labels)
644
+
645
+ if not return_dict:
646
+ output = (
647
+ logits,
648
+ *([contextualized_embeddings] if output_hidden_states else []),
649
+ *([attention_probs] if output_attentions else [])
650
+ )
651
+ return ((loss,) + output) if loss is not None else output
652
+
653
+ return SequenceClassifierOutput(
654
+ loss=loss,
655
+ logits=logits,
656
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
657
+ attentions=attention_probs if output_attentions else None
658
+ )
659
+
660
+
661
+ class LtgbertForTokenClassification(LtgbertModel):
662
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
663
+ _keys_to_ignore_on_load_missing = ["head"]
664
+
665
+ def __init__(self, config, **kwargs):
666
+ super().__init__(config, add_mlm_layer=False, **kwargs)
667
+
668
+ self.num_labels = config.num_labels
669
+ self.head = Classifier(config, self.num_labels)
670
+
671
+ def forward(
672
+ self,
673
+ input_ids: Optional[torch.Tensor] = None,
674
+ attention_mask: Optional[torch.Tensor] = None,
675
+ token_type_ids: Optional[torch.Tensor] = None,
676
+ position_ids: Optional[torch.Tensor] = None,
677
+ output_attentions: Optional[bool] = None,
678
+ output_hidden_states: Optional[bool] = None,
679
+ return_dict: Optional[bool] = None,
680
+ labels: Optional[torch.LongTensor] = None,
681
+ **kwargs
682
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
683
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
684
+
685
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
686
+ logits = self.head(sequence_output)
687
+
688
+ loss = None
689
+ if labels is not None:
690
+ loss_fct = nn.CrossEntropyLoss()
691
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
692
+
693
+ if not return_dict:
694
+ output = (
695
+ logits,
696
+ *([contextualized_embeddings] if output_hidden_states else []),
697
+ *([attention_probs] if output_attentions else [])
698
+ )
699
+ return ((loss,) + output) if loss is not None else output
700
+
701
+ return TokenClassifierOutput(
702
+ loss=loss,
703
+ logits=logits,
704
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
705
+ attentions=attention_probs if output_attentions else None
706
+ )
707
+
708
+
709
+ class LtgbertForQuestionAnswering(LtgbertModel):
710
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
711
+ _keys_to_ignore_on_load_missing = ["head"]
712
+
713
+ def __init__(self, config, **kwargs):
714
+ super().__init__(config, add_mlm_layer=False, **kwargs)
715
+
716
+ self.num_labels = config.num_labels
717
+ self.head = Classifier(config, self.num_labels)
718
+
719
+ def forward(
720
+ self,
721
+ input_ids: Optional[torch.Tensor] = None,
722
+ attention_mask: Optional[torch.Tensor] = None,
723
+ token_type_ids: Optional[torch.Tensor] = None,
724
+ position_ids: Optional[torch.Tensor] = None,
725
+ output_attentions: Optional[bool] = None,
726
+ output_hidden_states: Optional[bool] = None,
727
+ return_dict: Optional[bool] = None,
728
+ start_positions: Optional[torch.Tensor] = None,
729
+ end_positions: Optional[torch.Tensor] = None,
730
+ **kwargs
731
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
732
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
733
+
734
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
735
+ logits = self.head(sequence_output)
736
+
737
+ start_logits, end_logits = logits.split(1, dim=-1)
738
+ start_logits = start_logits.squeeze(-1).contiguous()
739
+ end_logits = end_logits.squeeze(-1).contiguous()
740
+
741
+ total_loss = None
742
+ if start_positions is not None and end_positions is not None:
743
+ # If we are on multi-GPU, split add a dimension
744
+ if len(start_positions.size()) > 1:
745
+ start_positions = start_positions.squeeze(-1)
746
+ if len(end_positions.size()) > 1:
747
+ end_positions = end_positions.squeeze(-1)
748
+
749
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
750
+ ignored_index = start_logits.size(1)
751
+ start_positions = start_positions.clamp(0, ignored_index)
752
+ end_positions = end_positions.clamp(0, ignored_index)
753
+
754
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
755
+ start_loss = loss_fct(start_logits, start_positions)
756
+ end_loss = loss_fct(end_logits, end_positions)
757
+ total_loss = (start_loss + end_loss) / 2
758
+
759
+ if not return_dict:
760
+ output = (
761
+ start_logits,
762
+ end_logits,
763
+ *([contextualized_embeddings] if output_hidden_states else []),
764
+ *([attention_probs] if output_attentions else [])
765
+ )
766
+ return ((total_loss,) + output) if total_loss is not None else output
767
+
768
+ return QuestionAnsweringModelOutput(
769
+ loss=total_loss,
770
+ start_logits=start_logits,
771
+ end_logits=end_logits,
772
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
773
+ attentions=attention_probs if output_attentions else None
774
+ )
775
+
776
+
777
+ class LtgbertForMultipleChoice(LtgbertModel):
778
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
779
+ _keys_to_ignore_on_load_missing = ["head"]
780
+
781
+ def __init__(self, config, **kwargs):
782
+ super().__init__(config, add_mlm_layer=False, **kwargs)
783
+
784
+ self.num_labels = getattr(config, "num_labels", 2)
785
+ self.head = Classifier(config, self.num_labels)
786
+
787
+ def forward(
788
+ self,
789
+ input_ids: Optional[torch.Tensor] = None,
790
+ attention_mask: Optional[torch.Tensor] = None,
791
+ token_type_ids: Optional[torch.Tensor] = None,
792
+ position_ids: Optional[torch.Tensor] = None,
793
+ labels: Optional[torch.Tensor] = None,
794
+ output_attentions: Optional[bool] = None,
795
+ output_hidden_states: Optional[bool] = None,
796
+ return_dict: Optional[bool] = None,
797
+ **kwargs
798
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
799
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
800
+ num_choices = input_ids.shape[1]
801
+
802
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1))
803
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
804
+
805
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask)
806
+ logits = self.head(sequence_output)
807
+ reshaped_logits = logits.view(-1, num_choices)
808
+
809
+ loss = None
810
+ if labels is not None:
811
+ loss_fct = nn.CrossEntropyLoss()
812
+ loss = loss_fct(reshaped_logits, labels)
813
+
814
+ if not return_dict:
815
+ output = (
816
+ reshaped_logits,
817
+ *([contextualized_embeddings] if output_hidden_states else []),
818
+ *([attention_probs] if output_attentions else [])
819
+ )
820
+ return ((loss,) + output) if loss is not None else output
821
+
822
+ return MultipleChoiceModelOutput(
823
+ loss=loss,
824
+ logits=reshaped_logits,
825
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
826
+ attentions=attention_probs if output_attentions else None
827
+ )