--- library_name: peft base_model: sudoping01/bambara-llm-exp3-merged tags: - axolotl - base_model:adapter:sudoping01/bambara-llm-exp3-merged - lora - transformers datasets: - instruction_dataset_asr_axolotl_format.jsonl pipeline_tag: text-generation model-index: - name: bambara-asr-llm-exp1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.12.2` ```yaml base_model: sudoping01/bambara-llm-exp3-merged processor_type: AutoProcessor hub_model_id: sudoping01/bambara-asr-llm-exp1 plugins: - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin cut_cross_entropy: true skip_prepare_dataset: true remove_unused_columns: false sample_packing: false ddp: true ddp_find_unused_parameters: true # Template and tokens chat_template: gemma3n eot_tokens: - special_tokens: eot_token: datasets: - path: instruction_dataset_asr_axolotl_format.jsonl type: chat_template val_set_size: 0.01 output_dir: ./outputs/bambara-gemma3n-asr-lora-exp1-v2 adapter: lora lora_r: 64 # Reduced from 64 for stability lora_alpha: 128 # Reduced from 128 for stability lora_dropout: 0.05 lora_target_modules: 'model.language_model.layers.[\d]+.(mlp|self_attn).(up|down|gate|q|k|v|o)_proj' # Sequence and batch settings - conservative for audio sequence_len: 4096 # Reduced from 4096 pad_to_sequence_len: false micro_batch_size: 8 # Increased: You have 8x H100s, can handle larger batches gradient_accumulation_steps: 2 # Training parameters num_epochs: 6 # Start with 1 epoch for testing optimizer: adamw_8bit lr_scheduler: cosine learning_rate: 2e-4 # Slightly higher as per research warmup_ratio: 0.1 # Increased warmup for multimodal weight_decay: 0.0 # Set to 0 for multimodal bf16: true # Must be true, not auto tf32: false load_in_4bit: false # Keep false for quality gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false # Monitoring logging_steps: 1 # More frequent for debugging saves_per_epoch: 2 evals_per_epoch: 2 # ASR metrics metrics: - name: wer - name: cer ```

# bambara-asr-llm-exp1 This model is a fine-tuned version of [sudoping01/bambara-llm-exp3-merged](https://huggingface.co/sudoping01/bambara-llm-exp3-merged) on the instruction_dataset_asr_axolotl_format.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.0544 - Memory/max Mem Active(gib): 18.76 - Memory/max Mem Allocated(gib): 18.76 - Memory/device Mem Reserved(gib): 19.99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Use adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 350 - training_steps: 3508 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mem Active(gib) | Mem Allocated(gib) | Mem Reserved(gib) | |:-------------:|:------:|:----:|:---------------:|:---------------:|:------------------:|:-----------------:| | No log | 0 | 0 | 2.3381 | 18.76 | 18.76 | 19.99 | | 0.4621 | 0.5009 | 293 | 0.5051 | 18.76 | 18.76 | 19.99 | | 0.3689 | 1.0017 | 586 | 0.3825 | 18.76 | 18.76 | 19.99 | | 0.3447 | 1.5026 | 879 | 0.3151 | 18.76 | 18.76 | 19.99 | | 0.2844 | 2.0034 | 1172 | 0.2623 | 18.76 | 18.76 | 19.99 | | 0.217 | 2.5043 | 1465 | 0.2172 | 18.76 | 18.76 | 19.99 | | 0.1302 | 3.0051 | 1758 | 0.1837 | 18.76 | 18.76 | 19.99 | | 0.1559 | 3.5060 | 2051 | 0.1448 | 18.76 | 18.76 | 19.99 | | 0.1213 | 4.0068 | 2344 | 0.1147 | 18.76 | 18.76 | 19.99 | | 0.0744 | 4.5077 | 2637 | 0.0851 | 18.76 | 18.76 | 19.99 | | 0.0555 | 5.0085 | 2930 | 0.0646 | 18.76 | 18.76 | 19.99 | | 0.0378 | 5.5094 | 3223 | 0.0544 | 18.76 | 18.76 | 19.99 | ### Framework versions - PEFT 0.17.0 - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4