--- library_name: peft license: gemma base_model: google/gemma-3n-E2B-it tags: - axolotl - base_model:adapter:google/gemma-3n-E2B-it - lora - transformers datasets: - sudoping01/bambara-instructions pipeline_tag: text-generation model-index: - name: bambara-llm-exp3 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.12.2` ```yaml base_model: google/gemma-3n-E2B-it hub_model_id: sudoping01/bambara-llm-exp3 plugins: - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin cut_cross_entropy: true load_in_4bit: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false ddp: true chat_template: gemma3n eot_tokens: - special_tokens: eot_token: datasets: - path: sudoping01/bambara-instructions type: chat_template split: train name: cleaned field_messages: messages message_property_mappings: role: role content: content val_set_size: 0.01 output_dir: ./outputs/bambara-gemma3n-lora-exp4 adapter: lora lora_r: 64 lora_alpha: 128 lora_dropout: 0.05 lora_target_modules: 'model.language_model.layers.[\d]+.(mlp|self_attn).(up|down|gate|q|k|v|o)_proj' sequence_len: 4096 sample_packing: false pad_to_sequence_len: false micro_batch_size: 8 gradient_accumulation_steps: 2 num_epochs: 3 optimizer: adamw_8bit lr_scheduler: cosine learning_rate: 1.2e-4 warmup_ratio: 0.03 weight_decay: 0.01 bf16: auto tf32: false logging_steps: 10 saves_per_epoch: 2 evals_per_epoch: 2 ```

# bambara-llm-exp3 This model is a fine-tuned version of [google/gemma-3n-E2B-it](https://huggingface.co/google/gemma-3n-E2B-it) on the sudoping01/bambara-instructions dataset. It achieves the following results on the evaluation set: - Loss: 0.4952 - Memory/max Mem Active(gib): 57.85 - Memory/max Mem Allocated(gib): 57.85 - Memory/device Mem Reserved(gib): 59.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Use adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 633 - training_steps: 21126 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mem Active(gib) | Mem Allocated(gib) | Mem Reserved(gib) | |:-------------:|:-----:|:-----:|:---------------:|:---------------:|:------------------:|:-----------------:| | No log | 0 | 0 | 7.4595 | 19.86 | 19.86 | 20.35 | | 0.8265 | 0.5 | 3521 | 0.7787 | 57.85 | 57.85 | 59.82 | | 0.7107 | 1.0 | 7042 | 0.6745 | 57.85 | 57.85 | 59.82 | | 0.6363 | 1.5 | 10563 | 0.6026 | 57.85 | 57.85 | 59.82 | | 0.5421 | 2.0 | 14084 | 0.5429 | 57.85 | 57.85 | 59.82 | | 0.5733 | 2.5 | 17605 | 0.5039 | 57.85 | 57.85 | 59.82 | | 0.5401 | 3.0 | 21126 | 0.4952 | 57.85 | 57.85 | 59.82 | ### Framework versions - PEFT 0.17.0 - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4