Update README.md
Browse files
README.md
CHANGED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: facebook/mms-tts
|
4 |
+
tags:
|
5 |
+
- text-to-speech
|
6 |
+
- vits
|
7 |
+
- mms
|
8 |
+
- multilingual
|
9 |
+
- Open-Source
|
10 |
+
- Mali
|
11 |
+
- Bambara
|
12 |
+
language:
|
13 |
+
- bm
|
14 |
+
language_bcp47:
|
15 |
+
- bm-ML
|
16 |
+
model-index:
|
17 |
+
- name: bambara-tts
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
name: text-to-speech
|
21 |
+
type: speech-synthesis
|
22 |
+
metrics:
|
23 |
+
- name: Subjective Quality
|
24 |
+
type: MOS
|
25 |
+
value: "N/A"
|
26 |
+
pipeline_tag: text-to-speech
|
27 |
+
license: cc-by-nc-4.0
|
28 |
+
---
|
29 |
+
|
30 |
+
# Bambara TTS
|
31 |
+
|
32 |
+
Text-to-speech synthesis model for Bambara (Bamanankan), a language spoken by over 14 million people primarily in Mali.
|
33 |
+
|
34 |
+
## Technical Specifications
|
35 |
+
|
36 |
+
- **Architecture**: VITS (Variational Inference with adversarial learning for end-to-end TTS)
|
37 |
+
- **Base Model**: Facebook/Meta MMS
|
38 |
+
- **Size**: 145 MB
|
39 |
+
- **Format**: PyTorch
|
40 |
+
- **Sampling Rate**: 16kHz
|
41 |
+
- **Language**: Bambara (bm-ML)
|
42 |
+
- **Performance**: Optimized for CPU (4GB RAM recommended)
|
43 |
+
|
44 |
+
## Installation
|
45 |
+
|
46 |
+
```
|
47 |
+
pip install transformers torch soundfile
|
48 |
+
```
|
49 |
+
|
50 |
+
## Usage
|
51 |
+
|
52 |
+
```python
|
53 |
+
from transformers import VitsModel, AutoTokenizer
|
54 |
+
import torch
|
55 |
+
|
56 |
+
# Load model and tokenizer
|
57 |
+
model = VitsModel.from_pretrained("sudoping01/bambara-tts")
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained("sudoping01/bambara-tts")
|
59 |
+
|
60 |
+
# Prepare text and generate speech
|
61 |
+
text = "An filɛ ni ye yɔrɔ minna ni an ye an sigi ka a layɛ yala an bɛ ka baara min kɛ ɛsike a kɛlen don ka Ɲɛ wa ?"
|
62 |
+
inputs = tokenizer(text, return_tensors="pt")
|
63 |
+
with torch.no_grad():
|
64 |
+
output = model(**inputs).waveform
|
65 |
+
|
66 |
+
# Save output
|
67 |
+
waveform = output.squeeze().cpu().numpy()
|
68 |
+
sample_rate = model.config.sampling_rate
|
69 |
+
import soundfile as sf
|
70 |
+
sf.write("bambara_output.wav", waveform, sample_rate)
|
71 |
+
```
|
72 |
+
|
73 |
+
## Limitations
|
74 |
+
|
75 |
+
- Limited handling of loanwords and code-switching with French
|
76 |
+
- Variable performance across regional dialects
|
77 |
+
- Requires standard orthography
|
78 |
+
- Limited prosody and emotional expression
|
79 |
+
|
80 |
+
## License
|
81 |
+
|
82 |
+
CC BY-NC 4.0 (Attribution-NonCommercial)
|
83 |
+
|
84 |
+
- Non-commercial use only
|
85 |
+
- Attribution required for model authors and Meta
|
86 |
+
- Use must respect Bambara language and culture
|
87 |
+
|
88 |
+
## References
|
89 |
+
|
90 |
+
```bibtex
|
91 |
+
@misc{bambara-tts,
|
92 |
+
author = {sudoping01},
|
93 |
+
title = {Text-to-Speech Model for Bambara},
|
94 |
+
year = {2025},
|
95 |
+
publisher = {HuggingFace},
|
96 |
+
howpublished = {\url{https://huggingface.co/sudoping01/bambara-tts}}
|
97 |
+
}
|
98 |
+
```
|