sudoping01 commited on
Commit
0206e79
·
verified ·
1 Parent(s): cdf65a5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md CHANGED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: facebook/mms-tts
4
+ tags:
5
+ - text-to-speech
6
+ - vits
7
+ - mms
8
+ - multilingual
9
+ - Open-Source
10
+ - Mali
11
+ - Bambara
12
+ language:
13
+ - bm
14
+ language_bcp47:
15
+ - bm-ML
16
+ model-index:
17
+ - name: bambara-tts
18
+ results:
19
+ - task:
20
+ name: text-to-speech
21
+ type: speech-synthesis
22
+ metrics:
23
+ - name: Subjective Quality
24
+ type: MOS
25
+ value: "N/A"
26
+ pipeline_tag: text-to-speech
27
+ license: cc-by-nc-4.0
28
+ ---
29
+
30
+ # Bambara TTS
31
+
32
+ Text-to-speech synthesis model for Bambara (Bamanankan), a language spoken by over 14 million people primarily in Mali.
33
+
34
+ ## Technical Specifications
35
+
36
+ - **Architecture**: VITS (Variational Inference with adversarial learning for end-to-end TTS)
37
+ - **Base Model**: Facebook/Meta MMS
38
+ - **Size**: 145 MB
39
+ - **Format**: PyTorch
40
+ - **Sampling Rate**: 16kHz
41
+ - **Language**: Bambara (bm-ML)
42
+ - **Performance**: Optimized for CPU (4GB RAM recommended)
43
+
44
+ ## Installation
45
+
46
+ ```
47
+ pip install transformers torch soundfile
48
+ ```
49
+
50
+ ## Usage
51
+
52
+ ```python
53
+ from transformers import VitsModel, AutoTokenizer
54
+ import torch
55
+
56
+ # Load model and tokenizer
57
+ model = VitsModel.from_pretrained("sudoping01/bambara-tts")
58
+ tokenizer = AutoTokenizer.from_pretrained("sudoping01/bambara-tts")
59
+
60
+ # Prepare text and generate speech
61
+ text = "An filɛ ni ye yɔrɔ minna ni an ye an sigi ka a layɛ yala an bɛ ka baara min kɛ ɛsike a kɛlen don ka Ɲɛ wa ?"
62
+ inputs = tokenizer(text, return_tensors="pt")
63
+ with torch.no_grad():
64
+ output = model(**inputs).waveform
65
+
66
+ # Save output
67
+ waveform = output.squeeze().cpu().numpy()
68
+ sample_rate = model.config.sampling_rate
69
+ import soundfile as sf
70
+ sf.write("bambara_output.wav", waveform, sample_rate)
71
+ ```
72
+
73
+ ## Limitations
74
+
75
+ - Limited handling of loanwords and code-switching with French
76
+ - Variable performance across regional dialects
77
+ - Requires standard orthography
78
+ - Limited prosody and emotional expression
79
+
80
+ ## License
81
+
82
+ CC BY-NC 4.0 (Attribution-NonCommercial)
83
+
84
+ - Non-commercial use only
85
+ - Attribution required for model authors and Meta
86
+ - Use must respect Bambara language and culture
87
+
88
+ ## References
89
+
90
+ ```bibtex
91
+ @misc{bambara-tts,
92
+ author = {sudoping01},
93
+ title = {Text-to-Speech Model for Bambara},
94
+ year = {2025},
95
+ publisher = {HuggingFace},
96
+ howpublished = {\url{https://huggingface.co/sudoping01/bambara-tts}}
97
+ }
98
+ ```