sudoping01 commited on
Commit
3dd91fa
·
verified ·
1 Parent(s): e00c587

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +135 -189
README.md CHANGED
@@ -1,199 +1,145 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ base_model: facebook/mms-tts
4
+ tags:
5
+ - text-to-speech
6
+ - vits
7
+ - mms
8
+ - multilingual
9
+ - Open-Source
10
+ - Mali
11
+ - MALIBA-AI
12
+ language:
13
+ - bm
14
+ - son
15
+ - dgc
16
+ - fuf
17
+ - bbo
18
+ - tmh
19
+ language_bcp47:
20
+ - bm-ML
21
+ - son-ML
22
+ - dgc-ML
23
+ - fuf-ML
24
+ - bbo-ML
25
+ - tmh-ML
26
+ model-index:
27
+ - name: malian-tts
28
+ results:
29
+ - task:
30
+ name: text-to-speech
31
+ type: speech-synthesis
32
+ metrics:
33
+ - name: Subjective Quality
34
+ type: MOS
35
+ value: "N/A"
36
+ pipeline_tag: text-to-speech
37
+ license: cc-by-nc-4.0
38
  ---
39
 
40
  # Model Card for Model ID
41
 
 
42
 
43
+ # MALIBA TTS: Text-to-Speech Models for Six Malian Languages 🇲🇱
44
+
45
+ ## Table of Contents
46
+ - [Introduction](#introduction)
47
+ - [Technical Specifications](#technical-specifications)
48
+ - [Installation](#installation)
49
+ - [Usage](#usage)
50
+ - [Limitations](#limitations)
51
+ - [References](#references)
52
+ - [License](#license)
53
+ - [Contributing](#contributing)
54
+
55
+ ## Introduction
56
+ MALIBA TTS is a collection of text-to-speech models for six Malian languages. These models represent a significant advancement for digital accessibility of Malian languages.
57
+
58
+ **Key Points:**
59
+ - Models available for 6 languages: **Bambara, Boomu, Dogon, Pular, Songhoy, and Tamasheq**
60
+ - Based on VITS architecture and Meta's MMS model
61
+ - Optimized for resource-constrained environments
62
+ - Preserves the linguistic authenticity of Malian languages
63
+
64
+ ## Technical Specifications
65
+
66
+ ### Model Specifications
67
+ - **Architecture**: VITS (Variational Inference with adversarial learning for end-to-end TTS)
68
+ - **Base Model**: Meta's MMS (Massively Multilingual Speech)
69
+ - **Model Size**: 145 MB per language
70
+ - **Format**: PyTorch
71
+ - **Sampling Rate**: 16kHz
72
+ - **Audio Encoding**: 16-bit PCM
73
+
74
+ ### Performance
75
+ - **Inference**: Optimized to run on CPU
76
+ - **Inference Time**: Varies based on text length and language
77
+ - **Memory Requirements**: ~4GB RAM recommended
78
+
79
+ ## Installation
80
+ ```
81
+ Coming soon
82
+ ```
83
+
84
+ ### Usage
85
+
86
+ ```python
87
+ coming soon
88
+ ```
89
+
90
+ ## Limitations
91
+ - Reduced performance on very long phrases (manual segmentation recommended)
92
+ - Quality varies by language and dialect
93
+ - French or English loanwords may have inaccurate pronunciation
94
+ - Limited support for numbers and dates
95
+ - The model performs best with grammatically correct texts
96
+
97
+ ## References
98
+ ```bibtex
99
+ @misc{malian-tts,
100
+ author = {MALIBA-AI},
101
+ title = {Text-to-Speech Models for Six Malian Languages},
102
+ year = {2025},
103
+ publisher = {HuggingFace},
104
+ howpublished = {\url{https://huggingface.co/MALIBA-AI/malian-tts}}
105
+ }
106
+
107
+ @article{kim2021conditional,
108
+ title={Conditional variational autoencoder with adversarial learning for end-to-end text-to-speech},
109
+ author={Kim, Jaehyeon and Kong, Jungil and Son, Juhee},
110
+ journal={International Conference on Machine Learning},
111
+ year={2021}
112
+ }
113
+
114
+ @article{meta2023mms,
115
+ title={Scaling Speech Technology to 1,000+ Languages},
116
+ author={A. Pratap and others},
117
+ journal={arXiv preprint arXiv:2305.13516},
118
+ year={2023}
119
+ }
120
+ ```
121
+
122
+ ## License
123
+ This project is licensed under CC BY-NC 4.0 (Attribution-NonCommercial).
124
+
125
+ ### Terms of Use
126
+ - Users agree to use the model in a way that respects Malian languages and culture.
127
+ - We encourage the use of these models to develop solutions that improve digital accessibility for speakers of Malian languages.
128
+ - Any use of the models must acknowledge MALIBA-AI as original creator.
129
+ - Commercial usage is not allow.
130
+
131
+ ## Contributing
132
+ MALIBA TTS is a project part of the MALIBA-AI initiative with the mission "No Malian Language Left Behind." We welcome contributions from:
133
+
134
+ - **Language Experts**: To improve the quality and accuracy of the models
135
+ - **Developers**: To create applications using these models
136
+ - **Researchers**: To explore technical improvements and optimizations
137
+ - **Data Contributors**: To enrich the training data
138
+
139
+ To contribute, please visit [MALIBA-AI](https://huggingface.co/MALIBA-AI) or contact [coming soon]directly.
140
 
141
+ ---
142
 
143
+ **MALIBA-AI: Empowering Mali's Future Through Community-Driven AI Innovation**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
 
145
+ *"No Malian Language Left Behind"*