--- library_name: transformers base_model: facebook/mms-tts tags: - text-to-speech - vits - mms - multilingual - Open-Source - Mali - Bambara language: - bm language_bcp47: - bm-ML model-index: - name: bambara-tts results: - task: name: text-to-speech type: speech-synthesis metrics: - name: Subjective Quality type: MOS value: "N/A" pipeline_tag: text-to-speech license: cc-by-nc-4.0 --- # Bambara TTS Text-to-speech synthesis model for Bambara (Bamanankan), a language spoken by over 14 million people primarily in Mali. ## Technical Specifications - **Architecture**: VITS (Variational Inference with adversarial learning for end-to-end TTS) - **Base Model**: Facebook/Meta MMS - **Size**: 145 MB - **Format**: PyTorch - **Sampling Rate**: 16kHz - **Language**: Bambara (bm-ML) - **Performance**: Optimized for CPU (4GB RAM recommended) ## Installation ``` pip install transformers torch soundfile ``` ## Usage ```python from transformers import VitsModel, AutoTokenizer import torch # Load model and tokenizer model = VitsModel.from_pretrained("sudoping01/bambara-tts") tokenizer = AutoTokenizer.from_pretrained("sudoping01/bambara-tts") # Prepare text and generate speech text = "An filɛ ni ye yɔrɔ minna ni an ye an sigi ka a layɛ yala an bɛ ka baara min kɛ ɛsike a kɛlen don ka Ɲɛ wa ?" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform # Save output waveform = output.squeeze().cpu().numpy() sample_rate = model.config.sampling_rate import soundfile as sf sf.write("bambara_output.wav", waveform, sample_rate) ``` ## Limitations - Limited handling of loanwords and code-switching with French - Variable performance across regional dialects - Requires standard orthography - Limited prosody and emotional expression ## License CC BY-NC 4.0 (Attribution-NonCommercial) - Non-commercial use only - Attribution required for model authors and Meta - Use must respect Bambara language and culture ## References ```bibtex @misc{bambara-tts, author = {sudoping01}, title = {Text-to-Speech Model for Bambara}, year = {2025}, publisher = {HuggingFace}, howpublished = {\url{https://huggingface.co/sudoping01/bambara-tts}} } ```