--- library_name: peft license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer model-index: - name: whosper-turbo results: [] --- # whosper-turbo This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 1.0796 | 0.9998 | 2354 | 1.0086 | | 0.9932 | 1.9998 | 4708 | 0.9251 | | 0.9271 | 2.9998 | 7062 | 0.8672 | | 0.8665 | 3.9998 | 9416 | 0.8163 | | 0.784 | 4.9998 | 11770 | 0.7824 | | 0.7456 | 5.9998 | 14124 | 0.7594 | ### Framework versions - PEFT 0.14.1.dev0 - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0