File size: 7,819 Bytes
eb78691 1eab6e5 eb78691 1eab6e5 eb78691 1eab6e5 eb78691 1eab6e5 eb78691 1eab6e5 eb78691 1eab6e5 eb78691 1eab6e5 eb78691 1eab6e5 eb78691 1eab6e5 eb78691 1eab6e5 eb78691 1eab6e5 eb78691 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""OpenCUA-7B EXL2 — Standalone Visual Inference (Streaming)
Tested On exllamav2 0.3.2, python3.12.9, torch 2.6.0+cu126
- Applies a minimal, safe monkey-patch so ExLlamaV2 knows how to wire the
OpenCUA EXL2 architecture (Qwen2.5-style vision tower + Llama-like LM).
- Keeps vision RoPE active (DO NOT neutralize positional embeddings).
- Chooses a valid 1-D RoPE style if available (LLAMA > HF > default).
- Loads model + vision tower, extracts EXL2 image embeddings.
- Builds a chat-style prompt with the image alias and user instruction.
- Streams tokens using ExLlamaV2DynamicGenerator / DynamicJob."""
# ------------------ CONFIG ------------------
MODEL_PATH = r"C:\Users\44741\Desktop\OpenCUA-7B-exl2"
IMAGE_URL = "http://images.cocodataset.org/val2017/000000001584.jpg"
INSTRUCTION = "Describe in detail everything you can see."
MAX_NEW_TOKENS = 600
# --------------------------------------------
import sys
import traceback
import torch
from PIL import Image
import requests
# ====================================================================
# --- MONKEY-PATCH FOR OPENCUA ARCHITECTURE (EXL2) ---
from exllamav2.architecture import (
ExLlamaV2ArchParams,
RopeStyle,
layer_keys_llama_norms,
layer_keys_llama_attn,
layer_keys_llama_mlp,
expect_keys_llama
)
print(" -- Applying OpenCUA architecture monkey-patch for inference...")
_original_arch_init = ExLlamaV2ArchParams.__init__
def _patched_arch_init(self, arch_string, read_config):
# Always call original first
_original_arch_init(self, arch_string, read_config)
# Then apply OpenCUA wiring if we detect the architecture string
if arch_string == "OpenCUAForConditionalGeneration":
print(" -- Found OpenCUA architecture, applying keys & RoPE settings...")
# Language model keys
self.lm_prefix = "language_model."
self.lm.layer_keys += (
layer_keys_llama_norms + layer_keys_llama_attn + layer_keys_llama_mlp
)
self.lm.expect_keys += expect_keys_llama
self.lm.attention_bias_qkv = True
self.lm.supports_tp = True
# Vision tower keys (Qwen2.5-style)
self.vt_prefix = "vision_tower."
read_config["vision_config"].update({"model_type": "qwen2.5"})
self.vt.keys.update({
"fused_qkv": ".attn.qkv",
"attn_o": ".attn.proj",
"mlp_gate": ".mlp.gate_proj",
"mlp_up": ".mlp.up_proj",
"mlp_down": ".mlp.down_proj",
"norm_1": ".norm1",
"norm_2": ".norm2",
"layers": "blocks",
"patch_conv": "patch_embed.proj",
})
self.vt.mlp_gate = True
self.vt.mlp_act_func = "silu"
self.vt.norm = "rmsnorm"
self.vt.mlp_bias = True
self.vt.attention_bias_qkv = True
self.vt.attention_bias_o = True
self.vt.vision_input_norm = False
self.vt.vision_conv3d = True
# IMPORTANT: Do NOT set RopeStyle.NONE; keep a valid 1-D RoPE if available
try:
if hasattr(RopeStyle, "LLAMA"):
self.vt.rope_style = RopeStyle.LLAMA
elif hasattr(RopeStyle, "HF"):
self.vt.rope_style = RopeStyle.HF
else:
# leave library default (works for Qwen2.5 vision)
pass
except Exception:
# In case some older exllamav2 builds behave differently
pass
# Vision merger/projection
self.vt.mlp_merger = True
self.mmp_prefix = "vision_tower.merger."
self.mmp.keys.update({
"mlp_gate": None,
"mlp_up": "mlp.0",
"mlp_down": "mlp.2",
"norm_2": "ln_q",
})
self.mmp.mlp_gate = False
self.mmp.mlp_act_func = "gelu"
self.mmp.mlp_bias = True
self.mmp.norm = "layernorm"
# Install patch
ExLlamaV2ArchParams.__init__ = _patched_arch_init
print(" -- Patch applied successfully.")
# ====================================================================
# Now we can import the rest of the library
from exllamav2 import (
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Tokenizer,
ExLlamaV2VisionTower,
)
from exllamav2.generator import (
ExLlamaV2DynamicGenerator,
ExLlamaV2Sampler,
ExLlamaV2DynamicJob, # <-- for streaming
)
def main():
try:
print(" -- Loading model/config...")
config = ExLlamaV2Config(MODEL_PATH) # Patch is applied during this call
# Optionally increase context if your EXL2 export supports it
# config.max_seq_len = 8192
model = ExLlamaV2(config)
cache = ExLlamaV2Cache(model, lazy=True)
model.load_autosplit(cache)
tokenizer = ExLlamaV2Tokenizer(config)
print(" -- Loading vision tower...")
vision_tower = ExLlamaV2VisionTower(config)
vision_tower.load()
try:
print(f"[Debug] vt.rope_style = {getattr(vision_tower, 'rope_style', 'n/a')}")
except Exception:
pass
generator = ExLlamaV2DynamicGenerator(model, cache, tokenizer)
print(f" -- Downloading test image from: {IMAGE_URL}")
image = Image.open(requests.get(IMAGE_URL, stream=True).raw).convert("RGB")
print(" -- Processing image and building prompt...")
image_embeddings = vision_tower.get_image_embeddings(model, tokenizer, image)
# Newline-separated alias is fine; here we have a single image
placeholders = image_embeddings.text_alias
prompt = (
f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
f"<|im_start|>user\n{placeholders}\n{INSTRUCTION}<|im_end|>\n"
f"<|im_start|>assistant\n"
)
# Preview (mask the raw alias for readability)
print("\n--- Prompt Sent to Model ---")
print(prompt.replace(image_embeddings.text_alias, "<image>"))
print("----------------------------\n")
# ---------------- STREAMING OUTPUT ----------------
print("--- Model Output (streaming) ---")
gen_settings = ExLlamaV2Sampler.Settings.greedy()
# 1) Build input ids with image embeddings
input_ids = tokenizer.encode(
prompt,
add_bos=True,
encode_special_tokens=True,
embeddings=[image_embeddings] # ensure the alias binds correctly
)
# 2) Create a streaming job
job = ExLlamaV2DynamicJob(
input_ids=input_ids,
max_new_tokens=MAX_NEW_TOKENS,
decode_special_tokens=False, # keep consistent
gen_settings=gen_settings,
embeddings=[image_embeddings], # pass embeddings here as well
)
# 3) Enqueue, then iterate results as they arrive
generator.enqueue(job)
final_text = []
try:
while generator.num_remaining_jobs():
results = generator.iterate()
for r in results:
chunk = r.get("text", "")
if chunk:
print(chunk, end="", flush=True)
final_text.append(chunk)
finally:
print("\n\n--- Test Complete ---")
# If you want the full output string:
full_output = "".join(final_text)
# print("\n[DEBUG] Full output:\n", full_output)
# ---------------------------------------------------
except Exception as e:
print(f"\nAn error occurred: {e}")
traceback.print_exc()
if __name__ == "__main__":
# Small CUDA perf niceties (safe to ignore if CPU)
try:
torch.backends.cuda.matmul.allow_tf32 = True
except Exception:
pass
main()
|