Improve model card: Add library, links, and usage example (#1)
Browse files- Improve model card: Add library, links, and usage example (8dc4360ef59581ce229c4d7992a2a92a49e13eb6)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,25 +1,82 @@
|
|
1 |
---
|
2 |
base_model: Qwen/Qwen3-14B
|
3 |
-
license: apache-2.0
|
4 |
datasets:
|
5 |
-
|
|
|
|
|
|
|
6 |
metrics:
|
7 |
-
|
8 |
pipeline_tag: text-generation
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
#
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
**
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
---
|
20 |
|
21 |
## Citation
|
22 |
|
|
|
|
|
23 |
```bibtex
|
24 |
@article{zhao2025learning,
|
25 |
title = {Learning to Reason without External Rewards},
|
@@ -27,4 +84,4 @@ A GRPO-fine-tuned version of Qwen3-14B trained on the MATH dataset.
|
|
27 |
journal = {arXiv preprint arXiv:2505.19590},
|
28 |
year = {2025}
|
29 |
}
|
30 |
-
```
|
|
|
1 |
---
|
2 |
base_model: Qwen/Qwen3-14B
|
|
|
3 |
datasets:
|
4 |
+
- math
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
license: apache-2.0
|
8 |
metrics:
|
9 |
+
- accuracy
|
10 |
pipeline_tag: text-generation
|
11 |
+
library_name: transformers
|
12 |
+
tags:
|
13 |
+
- reinforcement-learning
|
14 |
+
- llm
|
15 |
+
- reasoning
|
16 |
+
- math
|
17 |
---
|
18 |
|
19 |
+
# sunblaze-ucb/Qwen3-14B-GRPO-MATH-1EPOCH
|
20 |
+
|
21 |
+
[📄 Paper](https://huggingface.co/papers/2505.19590) | [🌐 Project Page](https://sites.google.com/view/eagle-llm) | [💻 GitHub](https://github.com/sunblaze-ucb/intuitor)
|
22 |
+
|
23 |
+
**Description:**
|
24 |
|
25 |
+
This model is a GRPO-fine-tuned version of Qwen3-14B, specifically trained on the MATH dataset. It is part of the **Intuitor** project, presented in the paper "Learning to Reason without External Rewards".
|
26 |
|
27 |
+
**Intuitor** is a novel reinforcement learning method that leverages *self-certainty*—the model’s own internal confidence—as its sole reward signal to fine-tune large language models (LLMs). This approach falls under a new framework called **Reinforcement Learning from Internal Feedback (RLIF)**, which enables LLMs to learn effectively from intrinsic signals, circumventing the need for costly external rewards, gold labels, or verifiers. This makes RLIF a scalable and domain-agnostic alternative to traditional RL methods, particularly useful when verifiable rewards are unavailable.
|
28 |
+
|
29 |
+
This particular model demonstrates Intuitor's ability to match GRPO's performance on mathematical benchmarks while showing superior generalization to out-of-domain tasks like code generation, all without requiring gold solutions or test cases.
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
## Usage
|
34 |
+
|
35 |
+
You can use this model with the `transformers` library for text generation.
|
36 |
+
|
37 |
+
```python
|
38 |
+
import torch
|
39 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
40 |
+
|
41 |
+
model_id = "sunblaze-ucb/Qwen3-14B-GRPO-MATH-1EPOCH"
|
42 |
+
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(
|
45 |
+
model_id,
|
46 |
+
torch_dtype=torch.bfloat16,
|
47 |
+
device_map="auto",
|
48 |
+
trust_remote_code=True
|
49 |
+
)
|
50 |
+
model.eval()
|
51 |
+
|
52 |
+
# Example using a chat-like template, typical for instruction-tuned models like Qwen.
|
53 |
+
# Adjust prompt format as needed for your specific use case.
|
54 |
+
messages = [
|
55 |
+
{"role": "user", "content": "Question: Solve the following equation: $x + 7 = 15$. Show your steps. Answer:"}
|
56 |
+
]
|
57 |
+
|
58 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
59 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
60 |
+
|
61 |
+
generated_ids = model.generate(
|
62 |
+
model_inputs.input_ids,
|
63 |
+
max_new_tokens=100,
|
64 |
+
do_sample=True,
|
65 |
+
temperature=0.7,
|
66 |
+
top_p=0.9,
|
67 |
+
eos_token_id=tokenizer.eos_token_id
|
68 |
+
)
|
69 |
+
|
70 |
+
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
71 |
+
print(generated_text)
|
72 |
+
```
|
73 |
|
74 |
---
|
75 |
|
76 |
## Citation
|
77 |
|
78 |
+
If you use Intuitor in your research, please cite our paper:
|
79 |
+
|
80 |
```bibtex
|
81 |
@article{zhao2025learning,
|
82 |
title = {Learning to Reason without External Rewards},
|
|
|
84 |
journal = {arXiv preprint arXiv:2505.19590},
|
85 |
year = {2025}
|
86 |
}
|
87 |
+
```
|