--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: xlsr-nm-nomimose results: [] --- # xlsr-nm-nomimose This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9684 - Wer: 0.4369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 132 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 4.9556 | 3.3932 | 200 | 3.0924 | 1.0 | | 3.024 | 6.7863 | 400 | 2.8991 | 0.9943 | | 2.7554 | 10.1709 | 600 | 2.4531 | 1.0 | | 2.1877 | 13.5641 | 800 | 1.6865 | 0.9181 | | 1.247 | 16.9573 | 1000 | 1.1531 | 0.7247 | | 0.7161 | 20.3419 | 1200 | 1.0237 | 0.6052 | | 0.4613 | 23.7350 | 1400 | 0.9152 | 0.5631 | | 0.3173 | 27.1197 | 1600 | 0.8917 | 0.5165 | | 0.2399 | 30.5128 | 1800 | 0.8512 | 0.5256 | | 0.1871 | 33.9060 | 2000 | 0.9078 | 0.4937 | | 0.1536 | 37.2906 | 2200 | 0.9574 | 0.4972 | | 0.1259 | 40.6838 | 2400 | 0.9938 | 0.4903 | | 0.1095 | 44.0684 | 2600 | 1.0196 | 0.4994 | | 0.0947 | 47.4615 | 2800 | 0.9235 | 0.4778 | | 0.073 | 50.8547 | 3000 | 1.1352 | 0.4972 | | 0.068 | 54.2393 | 3200 | 0.9595 | 0.4778 | | 0.0562 | 57.6325 | 3400 | 1.0105 | 0.4710 | | 0.0564 | 61.0171 | 3600 | 1.0297 | 0.4744 | | 0.052 | 64.4103 | 3800 | 1.0371 | 0.4562 | | 0.0371 | 67.8034 | 4000 | 1.0999 | 0.4733 | | 0.034 | 71.1880 | 4200 | 1.0486 | 0.4699 | | 0.039 | 74.5812 | 4400 | 0.9800 | 0.4585 | | 0.031 | 77.9744 | 4600 | 0.9614 | 0.4494 | | 0.0323 | 81.3590 | 4800 | 0.9838 | 0.4551 | | 0.0229 | 84.7521 | 5000 | 1.0129 | 0.4334 | | 0.0232 | 88.1368 | 5200 | 0.9266 | 0.4243 | | 0.0144 | 91.5299 | 5400 | 0.9751 | 0.4334 | | 0.0178 | 94.9231 | 5600 | 0.9619 | 0.4369 | | 0.0147 | 98.3077 | 5800 | 0.9684 | 0.4369 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0