File size: 4,369 Bytes
c2c0651
73b8e30
 
 
 
 
 
 
 
 
c2c0651
5dff8af
 
 
 
 
 
 
73b8e30
 
c2c0651
 
5dff8af
c2c0651
 
 
 
5dff8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c0651
 
 
 
5dff8af
 
 
 
c2c0651
5dff8af
 
 
 
 
c2c0651
 
5dff8af
 
 
 
c2c0651
 
5dff8af
 
 
 
c2c0651
 
5dff8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c0651
 
 
 
5dff8af
c2c0651
5dff8af
c2c0651
5dff8af
c2c0651
 
 
5dff8af
c2c0651
5dff8af
c2c0651
5dff8af
c2c0651
5dff8af
c2c0651
5dff8af
c2c0651
5dff8af
c2c0651
5dff8af
c2c0651
5dff8af
 
 
 
 
 
 
 
 
 
c2c0651
 
 
5dff8af
 
 
 
 
 
c2c0651
 
5dff8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c0651
 
 
5dff8af
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
library_name: transformers
tags:
- llama-3.2
- fine-tuned
- conversational
- question-answering
- agentic-ai
pipeline_tag: text-generation
base_model:
- meta-llama/Llama-3.2-1B-Instruct
---

# Model Card for Llama-3.2-3B-Linkbox-Finetune

## Model Details

### Model Description
A fine-tuned version of Meta's Llama 3.2-3B model optimized for contextual understanding and link analysis in conversational AI applications. This model demonstrates enhanced performance in:
- Multi-turn dialogue systems
- Knowledge retrieval and synthesis:cite[4]
- Contextual link recognition and analysis
- Agentic workflow orchestration:cite[7]

**Developed by:** Sujal Tamrakar  
**Model type:** Transformer-based language model with Grouped-Query Attention (GQA):cite[4]  
**Language(s):** Primarily English, with capabilities in German, French, Italian, Portuguese, Hindi, Spanish, and Thai:cite[4]  
**License:** Llama 3.2 Community License ([full terms](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE))  
**Finetuned from:** meta-llama/Llama-3.2-3B-Instruct:cite[4]

### Model Sources
- **Repository:** [Your GitHub Repository Link]
- **Base Model:** [Meta Llama 3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B)
- **Demo:** [Link to Gradio/Streamlit Demo]

## Uses

### Direct Use
- Contextual link analysis in documents
- Multi-turn conversational agents
- Knowledge retrieval and synthesis systems
- Agentic workflow automation:cite[7]

### Downstream Use
- Enterprise knowledge management systems
- AI-powered research assistants
- Context-aware content recommendation engines
- Automated documentation analysis tools

### Out-of-Scope Use
- Medical/legal decision making
- Generating malicious content
- High-risk government applications
- Languages beyond supported list without proper safety testing:cite[4]

## Bias, Risks, and Limitations
- May reflect biases in pretraining data
- Limited knowledge cutoff (December 2023):cite[4]
- Potential hallucination in long-form generation
- Performance degradation on highly technical domains

### Recommendations
- Implement content filtering (e.g., Llama Guard 3):cite[7]
- Use constrained decoding techniques
- Monitor for factual accuracy in critical applications
- Conduct safety testing for target deployment languages:cite[4]

## How to Get Started
```bash
from transformers import pipeline

model_id = "suzall/llama-3.2-3b-linkbox-finetune"
pipe = pipeline(
    "text-generation",
    model=model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16
)

messages = [{
    "role": "user",
    "content": "Analyze links in this text: [YOUR_TEXT]"
}]
outputs = pipe(messages, max_new_tokens=256)
```

## Training Details

### Training Data
- FineTome-100k dataset (conversational format)13

- in-specific link analysis corpus (10k samples)

- Synthetic data generated using Llama 3.1-8B13

### Training Procedure

- **Architecture:** LoRA fine-tuning with r=3213

- **Optimizer:** AdamW-8bit

- **Learning Rate:** 2e-4 with linear decay

- **Sequence Length:** 2048 tokens

- **Hardware:** NVIDIA A100 (40GB)

- **Training Time:** 8 GPU hours

#### Training Hyperparameters

```bash
TrainingArguments(
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    num_train_epochs=3,
    learning_rate=2e-4,
    bf16=True,
    lr_scheduler_type="linear"
)
```

## Evaluation

### Benchmark Performance
| Benchmark        | Score | Comparison      |
|------------------|-------|-----------------|
| IFEval (Strict)  | 78.2  | +1.3 vs base    |
| LinkAnalysis-API | 89.4  | Custom metric   |
| MMLU             | 63.7  | -0.6 vs base    |

## Environmental Impact
- **Carbon Emissions:** ~0.8 kgCO2eq (estimated)  
- **Hardware:** 1×A100-40GB  
- **Energy:** 2.5kWh (Renewable-powered)  

## Technical Specifications

### Model Architecture
- Transformer-based with GQA5  
- 3.21B parameters  
- 32-layer decoder  
- 4096 hidden dimension  
- 128k token context window5  

### Quantization Options
| Precision | Memory | Recommended Use     |
|-----------|--------|---------------------|
| BF16      | 6.5GB  | Full precision      |
| FP8       | 3.2GB  | Balanced            |
| INT4      | 1.75GB | Edge deployment     |

## Model Card Contact

- **Maintainer:** Sujal Tamrakar

- **Email:** [email protected]