Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +9 -0
- .gitignore +4 -0
- .ipynb_checkpoints/README-checkpoint.md +129 -0
- .ipynb_checkpoints/Untitled-checkpoint.ipynb +87 -0
- 20250205-041232_1234.mp4 +3 -0
- 20250205-043500_1234.mp4 +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000010.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000011.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000012.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000013.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000014.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000015.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000016.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000017.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000018.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000019.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000020.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000021.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000022.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000023.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000024.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000025.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000026.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000027.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000028.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000029.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000030.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000031.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000032.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000033.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000034.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000035.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000036.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000037.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000038.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora-000039.safetensors +3 -0
- Mavuika_im_lora_dir/Mavuika_single_im_lora.safetensors +3 -0
- README.md +129 -0
- cache_latents.py +245 -0
- cache_text_encoder_outputs.py +135 -0
- convert_lora.py +129 -0
- dataset/__init__.py +0 -0
- dataset/config_utils.py +359 -0
- dataset/dataset_config.md +293 -0
- dataset/image_video_dataset.py +1255 -0
- hunyuan_model/__init__.py +0 -0
- hunyuan_model/activation_layers.py +23 -0
- hunyuan_model/attention.py +230 -0
- hunyuan_model/autoencoder_kl_causal_3d.py +609 -0
- hunyuan_model/embed_layers.py +132 -0
.gitattributes
CHANGED
@@ -33,3 +33,12 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
20250131-122504_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
20250131-125418_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
20250131-130555_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
39 |
+
20250203-092003_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
40 |
+
20250203-112055_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
41 |
+
20250203-152222_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
42 |
+
20250203-153526_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
43 |
+
20250205-041232_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
44 |
+
20250205-043500_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.venv
|
3 |
+
venv/
|
4 |
+
logs/
|
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Genshin_Impact_Mavuika HunyuanVideo LoRA
|
2 |
+
|
3 |
+
This repository contains the necessary setup and scripts to generate videos using the HunyuanVideo model with a LoRA (Low-Rank Adaptation) fine-tuned for Mavuika. Below are the instructions to install dependencies, download models, and run the demo.
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## Installation
|
8 |
+
|
9 |
+
### Step 1: Install System Dependencies
|
10 |
+
Run the following command to install required system packages:
|
11 |
+
```bash
|
12 |
+
sudo apt-get update && sudo apt-get install git-lfs ffmpeg cbm
|
13 |
+
```
|
14 |
+
|
15 |
+
### Step 2: Clone the Repository
|
16 |
+
Clone the repository and navigate to the project directory:
|
17 |
+
```bash
|
18 |
+
git clone https://huggingface.co/svjack/Genshin_Impact_Mavuika_HunyuanVideo_lora
|
19 |
+
cd Genshin_Impact_Mavuika_HunyuanVideo_lora
|
20 |
+
```
|
21 |
+
|
22 |
+
### Step 3: Install Python Dependencies
|
23 |
+
Install the required Python packages:
|
24 |
+
```bash
|
25 |
+
conda create -n py310 python=3.10
|
26 |
+
conda activate py310
|
27 |
+
pip install ipykernel
|
28 |
+
python -m ipykernel install --user --name py310 --display-name "py310"
|
29 |
+
|
30 |
+
pip install -r requirements.txt
|
31 |
+
pip install ascii-magic matplotlib tensorboard huggingface_hub
|
32 |
+
pip install moviepy==1.0.3
|
33 |
+
pip install sageattention==1.0.6
|
34 |
+
|
35 |
+
pip install torch==2.5.0 torchvision
|
36 |
+
```
|
37 |
+
|
38 |
+
---
|
39 |
+
|
40 |
+
## Download Models
|
41 |
+
|
42 |
+
### Step 1: Download HunyuanVideo Model
|
43 |
+
Download the HunyuanVideo model and place it in the `ckpts` directory:
|
44 |
+
```bash
|
45 |
+
huggingface-cli download tencent/HunyuanVideo --local-dir ./ckpts
|
46 |
+
```
|
47 |
+
|
48 |
+
### Step 2: Download LLaVA Model
|
49 |
+
Download the LLaVA model and preprocess it:
|
50 |
+
```bash
|
51 |
+
cd ckpts
|
52 |
+
huggingface-cli download xtuner/llava-llama-3-8b-v1_1-transformers --local-dir ./llava-llama-3-8b-v1_1-transformers
|
53 |
+
wget https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/hyvideo/utils/preprocess_text_encoder_tokenizer_utils.py
|
54 |
+
python preprocess_text_encoder_tokenizer_utils.py --input_dir llava-llama-3-8b-v1_1-transformers --output_dir text_encoder
|
55 |
+
```
|
56 |
+
|
57 |
+
### Step 3: Download CLIP Model
|
58 |
+
Download the CLIP model for the text encoder:
|
59 |
+
```bash
|
60 |
+
huggingface-cli download openai/clip-vit-large-patch14 --local-dir ./text_encoder_2
|
61 |
+
```
|
62 |
+
|
63 |
+
---
|
64 |
+
|
65 |
+
## Demo
|
66 |
+
|
67 |
+
### Generate Video 1: Mavuika
|
68 |
+
Run the following command to generate a video of Mavuika:
|
69 |
+
```bash
|
70 |
+
python hv_generate_video.py \
|
71 |
+
--fp8 \
|
72 |
+
--video_size 544 960 \
|
73 |
+
--video_length 60 \
|
74 |
+
--infer_steps 30 \
|
75 |
+
--prompt "Mavuika, featuring long, wavy red hair with golden highlights and large, star-shaped earrings. Mavuika wears dark sunglasses, a black choker, and a black leather glove on their left hand. Their attire includes a black and gold armor-like top with intricate designs. The background is a gradient of soft white to light blue, emphasizing Mavuika's confident expression and stylish appearance." \
|
76 |
+
--save_path . \
|
77 |
+
--output_type both \
|
78 |
+
--dit ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt \
|
79 |
+
--attn_mode sdpa \
|
80 |
+
--vae ckpts/hunyuan-video-t2v-720p/vae/pytorch_model.pt \
|
81 |
+
--vae_chunk_size 32 \
|
82 |
+
--vae_spatial_tile_sample_min_size 128 \
|
83 |
+
--text_encoder1 ckpts/text_encoder \
|
84 |
+
--text_encoder2 ckpts/text_encoder_2 \
|
85 |
+
--seed 1234 \
|
86 |
+
--lora_multiplier 1.0 \
|
87 |
+
--lora_weight Mavuika_im_lora_dir/Mavuika_single_im_lora-000035.safetensors
|
88 |
+
|
89 |
+
```
|
90 |
+
|
91 |
+
|
92 |
+
<video controls autoplay src="https://huggingface.co/svjack/Genshin_Impact_Mavuika_HunyuanVideo_lora/resolve/main/20250205-041232_1234.mp4"></video>
|
93 |
+
|
94 |
+
|
95 |
+
### Generate Video 2: Mavuika Sun
|
96 |
+
Run the following command to generate a video of KAEDEHARA_KAZUHA:
|
97 |
+
```bash
|
98 |
+
python hv_generate_video.py \
|
99 |
+
--fp8 \
|
100 |
+
--video_size 544 960 \
|
101 |
+
--video_length 60 \
|
102 |
+
--infer_steps 30 \
|
103 |
+
--prompt "Fantastic artwork of Mavuika, featuring long, wavy red hair with golden highlights and large, star-shaped earrings. Mavuika wears dark sunglasses, a black choker, and a black leather glove on their left hand. Their attire includes a black and gold armor-like top with intricate designs, standing confidently in a warm sunset-lit rural village. The background transitions into the interior of a futuristic spaceship, blending the rustic and sci-fi elements seamlessly. The gradient of soft white to light blue in the sky enhances Mavuika's stylish and commanding presence." \
|
104 |
+
--save_path . \
|
105 |
+
--output_type both \
|
106 |
+
--dit ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt \
|
107 |
+
--attn_mode sdpa \
|
108 |
+
--vae ckpts/hunyuan-video-t2v-720p/vae/pytorch_model.pt \
|
109 |
+
--vae_chunk_size 32 \
|
110 |
+
--vae_spatial_tile_sample_min_size 128 \
|
111 |
+
--text_encoder1 ckpts/text_encoder \
|
112 |
+
--text_encoder2 ckpts/text_encoder_2 \
|
113 |
+
--seed 1234 \
|
114 |
+
--lora_multiplier 1.0 \
|
115 |
+
--lora_weight Mavuika_im_lora_dir/Mavuika_single_im_lora-000035.safetensors
|
116 |
+
```
|
117 |
+
|
118 |
+
|
119 |
+
<video controls autoplay src="https://huggingface.co/svjack/Genshin_Impact_Mavuika_HunyuanVideo_lora/resolve/main/20250205-043500_1234.mp4"></video>
|
120 |
+
|
121 |
+
|
122 |
+
---
|
123 |
+
|
124 |
+
## Notes
|
125 |
+
- Ensure you have sufficient GPU resources for video generation.
|
126 |
+
- Adjust the `--video_size`, `--video_length`, and `--infer_steps` parameters as needed for different output qualities and lengths.
|
127 |
+
- The `--prompt` parameter can be modified to generate videos with different scenes or actions.
|
128 |
+
|
129 |
+
---
|
.ipynb_checkpoints/Untitled-checkpoint.ipynb
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "1ad678b1-90f1-4382-afe3-71e101c1f41a",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"python hv_generate_video.py \\\n",
|
11 |
+
" --fp8 \\\n",
|
12 |
+
" --video_size 544 960 \\\n",
|
13 |
+
" --video_length 60 \\\n",
|
14 |
+
" --infer_steps 30 \\\n",
|
15 |
+
" --prompt \"fantastic artwork of a handsome man img. warm sunset in a rural village. the interior of a futuristic spaceship in the background.\" \\\n",
|
16 |
+
" --save_path . \\\n",
|
17 |
+
" --output_type both \\\n",
|
18 |
+
" --dit ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt \\\n",
|
19 |
+
" --attn_mode sdpa \\\n",
|
20 |
+
" --vae ckpts/hunyuan-video-t2v-720p/vae/pytorch_model.pt \\\n",
|
21 |
+
" --vae_chunk_size 32 \\\n",
|
22 |
+
" --vae_spatial_tile_sample_min_size 128 \\\n",
|
23 |
+
" --text_encoder1 ckpts/text_encoder \\\n",
|
24 |
+
" --text_encoder2 ckpts/text_encoder_2 \\\n",
|
25 |
+
" --seed 1234 \\\n",
|
26 |
+
" --lora_multiplier 1.0 \\\n",
|
27 |
+
" --lora_weight Xiang_CID_im_lora_dir/Xiang_CID_im_lora_dir/Xiang_CID_single_im_lora-000004.safetensors\n"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": null,
|
33 |
+
"id": "a0387d95-f527-47c2-8713-6b74d3a0126e",
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"python hv_generate_video.py \\\n",
|
38 |
+
" --fp8 \\\n",
|
39 |
+
" --video_size 544 960 \\\n",
|
40 |
+
" --video_length 60 \\\n",
|
41 |
+
" --infer_steps 30 \\\n",
|
42 |
+
" --prompt \"surrealist painting of a handsome man img. underwater glow, deep sea. a peaceful zen garden with koi pond in the background.\" \\\n",
|
43 |
+
" --save_path . \\\n",
|
44 |
+
" --output_type both \\\n",
|
45 |
+
" --dit ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt \\\n",
|
46 |
+
" --attn_mode sdpa \\\n",
|
47 |
+
" --vae ckpts/hunyuan-video-t2v-720p/vae/pytorch_model.pt \\\n",
|
48 |
+
" --vae_chunk_size 32 \\\n",
|
49 |
+
" --vae_spatial_tile_sample_min_size 128 \\\n",
|
50 |
+
" --text_encoder1 ckpts/text_encoder \\\n",
|
51 |
+
" --text_encoder2 ckpts/text_encoder_2 \\\n",
|
52 |
+
" --seed 1234 \\\n",
|
53 |
+
" --lora_multiplier 1.0 \\\n",
|
54 |
+
" --lora_weight Xiang_CID_im_lora_dir/Xiang_CID_im_lora_dir/Xiang_CID_single_im_lora-000010.safetensors\n"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": null,
|
60 |
+
"id": "780799d2-d8d9-4dcd-9f71-f5ee00f52a31",
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": []
|
64 |
+
}
|
65 |
+
],
|
66 |
+
"metadata": {
|
67 |
+
"kernelspec": {
|
68 |
+
"display_name": "py310",
|
69 |
+
"language": "python",
|
70 |
+
"name": "py310"
|
71 |
+
},
|
72 |
+
"language_info": {
|
73 |
+
"codemirror_mode": {
|
74 |
+
"name": "ipython",
|
75 |
+
"version": 3
|
76 |
+
},
|
77 |
+
"file_extension": ".py",
|
78 |
+
"mimetype": "text/x-python",
|
79 |
+
"name": "python",
|
80 |
+
"nbconvert_exporter": "python",
|
81 |
+
"pygments_lexer": "ipython3",
|
82 |
+
"version": "3.10.16"
|
83 |
+
}
|
84 |
+
},
|
85 |
+
"nbformat": 4,
|
86 |
+
"nbformat_minor": 5
|
87 |
+
}
|
20250205-041232_1234.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5a9d4a1cd062cb7ce96f990ad45d9c6b2f47e098eff4b924ee99a16b2e10d1e
|
3 |
+
size 1087467
|
20250205-043500_1234.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fa3c5fc487581d1780aace1397d83c98ef839a62ea41906c3885d501a8f4940
|
3 |
+
size 1169938
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb91acd4b648c74e900fdecfad91cc0747527ff2526e0f1ebf33063a6a3fd7c0
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000011.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2c213e02f035b426554de4174597938779d6b8e6f875c912b8be3b44bdb0581
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a06bc717fef9fb488af32d90bf916248a53400b71893bad24fe2225d684f24b
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000013.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f450efe7d60a4947564099fc0ee91d2068bba88e96a5c7b6e17bd4ceb5e1fe2a
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b46777324943392c8f87849edf2f033982748c2ab219150c635dbb97ce97801b
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed651d914fe3acde3c3b8c02d1fd0df1c45cc484cb281809d57e8e6538a6797a
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45d33d93f77235c6d02bf7b3396285a4883996ee1dc47dde3cb17eb5d3723ea1
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000017.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2414c86d76f7078cac639cabdb3f50b51298efd0cb166d8d443b480af082e99b
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000018.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e490858d84600fdd755e54081562fbca66ad830e8655410ee9e3c13d8ffc2ebe
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e324c137a77b8a385ddc8e50feb4c440a676fa547fc3f22682fdff48a6618e9
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000020.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79a2e8c688e158ae58ac87fb047667f124bcda734ce30f6f67f838a88040deb0
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000021.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38e7e22bef98c62cbb2e210e96c82c79ebe922c28ee0077be32e4fe8e1eb1e82
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000022.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09d0eb593087bde6a25d395bbfc28b9c6e5ec537c9956e70f5bb4125c7486e0b
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000023.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f145149d88d80000a6edc4c33d3d5b4f1b2df6c61164b61ece4585245b986d18
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000024.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19736b4e36af6344858d5e1c9fc54265f887f3a366b2af1a9bb75b6a00e09662
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000025.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed416455dc7056bac87c7ec8e91b3ec4c1df7b8446a9da57ef799313c64c033f
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000026.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc74f28d2c03112bd8b0cab464f041e52345f1437cb3e12f3ee297840bd7b42a
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000027.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:998421df3704704d20a6cc84702ce5a365d34df0de2a91bf6454cac3155398f7
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000028.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ccf5e72f56c06a863b51c71d8070631d13a12827fbbb3ab4d94cb24e1e6de95
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000029.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05dab2db6bfe48499ca995a2efb0e2fe8a3a7aa11f79a4d39a7fdc79594d3243
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000030.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:231001ecfe296fead0d6852f0293850ce67d27ad2e6c8bb15fd2dde47bba52e4
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000031.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98db745553e99a7f493bf115242b841ed8ac2a0f9c8c402894832851fa4f59bd
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000032.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9112d516c343773f831bdcece1840c2c02be49fda254ea04a532d72d09b404e
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c72cecc9dcb80e5ff778e3035959a3b10ee200e967510c648ab98158964af2a5
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000034.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01a453cb964672d914979fd1dbb6ebaac4ef501077a87c2964695aaad09ef493
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000035.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:373d976b71331525b490dd8195273a015f82beb8d34ddb331a64bd40c2fdb1b5
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000036.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b50e263d65ccbad83a0493e19db1ad412d25902a1574da76cf1034ce61e2e348
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b610212816f718b05ce45804182bed930bf0974e17de6607816ab44468e7b047
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000038.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37ead1a03403354013a479bd9fc34bdff5eaf95643a9db213a2d64fe227178bb
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora-000039.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fffbf16bc23db5fec01421202c5284769f3910b4b1640af2e64484de3a1a69e1
|
3 |
+
size 322557568
|
Mavuika_im_lora_dir/Mavuika_single_im_lora.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:273327c68dcb2ef962cfef8b5a38e085a14cb42d0012cc72a7f1f8aaabbf1e06
|
3 |
+
size 322557568
|
README.md
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Genshin_Impact_Mavuika HunyuanVideo LoRA
|
2 |
+
|
3 |
+
This repository contains the necessary setup and scripts to generate videos using the HunyuanVideo model with a LoRA (Low-Rank Adaptation) fine-tuned for Mavuika. Below are the instructions to install dependencies, download models, and run the demo.
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## Installation
|
8 |
+
|
9 |
+
### Step 1: Install System Dependencies
|
10 |
+
Run the following command to install required system packages:
|
11 |
+
```bash
|
12 |
+
sudo apt-get update && sudo apt-get install git-lfs ffmpeg cbm
|
13 |
+
```
|
14 |
+
|
15 |
+
### Step 2: Clone the Repository
|
16 |
+
Clone the repository and navigate to the project directory:
|
17 |
+
```bash
|
18 |
+
git clone https://huggingface.co/svjack/Genshin_Impact_Mavuika_HunyuanVideo_lora
|
19 |
+
cd Genshin_Impact_Mavuika_HunyuanVideo_lora
|
20 |
+
```
|
21 |
+
|
22 |
+
### Step 3: Install Python Dependencies
|
23 |
+
Install the required Python packages:
|
24 |
+
```bash
|
25 |
+
conda create -n py310 python=3.10
|
26 |
+
conda activate py310
|
27 |
+
pip install ipykernel
|
28 |
+
python -m ipykernel install --user --name py310 --display-name "py310"
|
29 |
+
|
30 |
+
pip install -r requirements.txt
|
31 |
+
pip install ascii-magic matplotlib tensorboard huggingface_hub
|
32 |
+
pip install moviepy==1.0.3
|
33 |
+
pip install sageattention==1.0.6
|
34 |
+
|
35 |
+
pip install torch==2.5.0 torchvision
|
36 |
+
```
|
37 |
+
|
38 |
+
---
|
39 |
+
|
40 |
+
## Download Models
|
41 |
+
|
42 |
+
### Step 1: Download HunyuanVideo Model
|
43 |
+
Download the HunyuanVideo model and place it in the `ckpts` directory:
|
44 |
+
```bash
|
45 |
+
huggingface-cli download tencent/HunyuanVideo --local-dir ./ckpts
|
46 |
+
```
|
47 |
+
|
48 |
+
### Step 2: Download LLaVA Model
|
49 |
+
Download the LLaVA model and preprocess it:
|
50 |
+
```bash
|
51 |
+
cd ckpts
|
52 |
+
huggingface-cli download xtuner/llava-llama-3-8b-v1_1-transformers --local-dir ./llava-llama-3-8b-v1_1-transformers
|
53 |
+
wget https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/hyvideo/utils/preprocess_text_encoder_tokenizer_utils.py
|
54 |
+
python preprocess_text_encoder_tokenizer_utils.py --input_dir llava-llama-3-8b-v1_1-transformers --output_dir text_encoder
|
55 |
+
```
|
56 |
+
|
57 |
+
### Step 3: Download CLIP Model
|
58 |
+
Download the CLIP model for the text encoder:
|
59 |
+
```bash
|
60 |
+
huggingface-cli download openai/clip-vit-large-patch14 --local-dir ./text_encoder_2
|
61 |
+
```
|
62 |
+
|
63 |
+
---
|
64 |
+
|
65 |
+
## Demo
|
66 |
+
|
67 |
+
### Generate Video 1: Mavuika
|
68 |
+
Run the following command to generate a video of Mavuika:
|
69 |
+
```bash
|
70 |
+
python hv_generate_video.py \
|
71 |
+
--fp8 \
|
72 |
+
--video_size 544 960 \
|
73 |
+
--video_length 60 \
|
74 |
+
--infer_steps 30 \
|
75 |
+
--prompt "Mavuika, featuring long, wavy red hair with golden highlights and large, star-shaped earrings. Mavuika wears dark sunglasses, a black choker, and a black leather glove on their left hand. Their attire includes a black and gold armor-like top with intricate designs. The background is a gradient of soft white to light blue, emphasizing Mavuika's confident expression and stylish appearance." \
|
76 |
+
--save_path . \
|
77 |
+
--output_type both \
|
78 |
+
--dit ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt \
|
79 |
+
--attn_mode sdpa \
|
80 |
+
--vae ckpts/hunyuan-video-t2v-720p/vae/pytorch_model.pt \
|
81 |
+
--vae_chunk_size 32 \
|
82 |
+
--vae_spatial_tile_sample_min_size 128 \
|
83 |
+
--text_encoder1 ckpts/text_encoder \
|
84 |
+
--text_encoder2 ckpts/text_encoder_2 \
|
85 |
+
--seed 1234 \
|
86 |
+
--lora_multiplier 1.0 \
|
87 |
+
--lora_weight Mavuika_im_lora_dir/Mavuika_single_im_lora-000035.safetensors
|
88 |
+
|
89 |
+
```
|
90 |
+
|
91 |
+
|
92 |
+
<video controls autoplay src="https://huggingface.co/svjack/Genshin_Impact_Mavuika_HunyuanVideo_lora/resolve/main/20250205-041232_1234.mp4"></video>
|
93 |
+
|
94 |
+
|
95 |
+
### Generate Video 2: Mavuika Sun
|
96 |
+
Run the following command to generate a video of KAEDEHARA_KAZUHA:
|
97 |
+
```bash
|
98 |
+
python hv_generate_video.py \
|
99 |
+
--fp8 \
|
100 |
+
--video_size 544 960 \
|
101 |
+
--video_length 60 \
|
102 |
+
--infer_steps 30 \
|
103 |
+
--prompt "Fantastic artwork of Mavuika, featuring long, wavy red hair with golden highlights and large, star-shaped earrings. Mavuika wears dark sunglasses, a black choker, and a black leather glove on their left hand. Their attire includes a black and gold armor-like top with intricate designs, standing confidently in a warm sunset-lit rural village. The background transitions into the interior of a futuristic spaceship, blending the rustic and sci-fi elements seamlessly. The gradient of soft white to light blue in the sky enhances Mavuika's stylish and commanding presence." \
|
104 |
+
--save_path . \
|
105 |
+
--output_type both \
|
106 |
+
--dit ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt \
|
107 |
+
--attn_mode sdpa \
|
108 |
+
--vae ckpts/hunyuan-video-t2v-720p/vae/pytorch_model.pt \
|
109 |
+
--vae_chunk_size 32 \
|
110 |
+
--vae_spatial_tile_sample_min_size 128 \
|
111 |
+
--text_encoder1 ckpts/text_encoder \
|
112 |
+
--text_encoder2 ckpts/text_encoder_2 \
|
113 |
+
--seed 1234 \
|
114 |
+
--lora_multiplier 1.0 \
|
115 |
+
--lora_weight Mavuika_im_lora_dir/Mavuika_single_im_lora-000035.safetensors
|
116 |
+
```
|
117 |
+
|
118 |
+
|
119 |
+
<video controls autoplay src="https://huggingface.co/svjack/Genshin_Impact_Mavuika_HunyuanVideo_lora/resolve/main/20250205-043500_1234.mp4"></video>
|
120 |
+
|
121 |
+
|
122 |
+
---
|
123 |
+
|
124 |
+
## Notes
|
125 |
+
- Ensure you have sufficient GPU resources for video generation.
|
126 |
+
- Adjust the `--video_size`, `--video_length`, and `--infer_steps` parameters as needed for different output qualities and lengths.
|
127 |
+
- The `--prompt` parameter can be modified to generate videos with different scenes or actions.
|
128 |
+
|
129 |
+
---
|
cache_latents.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from typing import Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from dataset import config_utils
|
10 |
+
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
import logging
|
14 |
+
|
15 |
+
from dataset.image_video_dataset import BaseDataset, ItemInfo, save_latent_cache
|
16 |
+
from hunyuan_model.vae import load_vae
|
17 |
+
from hunyuan_model.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
|
18 |
+
from utils.model_utils import str_to_dtype
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
logging.basicConfig(level=logging.INFO)
|
22 |
+
|
23 |
+
|
24 |
+
def show_image(image: Union[list[Union[Image.Image, np.ndarray], Union[Image.Image, np.ndarray]]]) -> int:
|
25 |
+
import cv2
|
26 |
+
|
27 |
+
imgs = (
|
28 |
+
[image]
|
29 |
+
if (isinstance(image, np.ndarray) and len(image.shape) == 3) or isinstance(image, Image.Image)
|
30 |
+
else [image[0], image[-1]]
|
31 |
+
)
|
32 |
+
if len(imgs) > 1:
|
33 |
+
print(f"Number of images: {len(image)}")
|
34 |
+
for i, img in enumerate(imgs):
|
35 |
+
if len(imgs) > 1:
|
36 |
+
print(f"{'First' if i == 0 else 'Last'} image: {img.shape}")
|
37 |
+
else:
|
38 |
+
print(f"Image: {img.shape}")
|
39 |
+
cv2_img = np.array(img) if isinstance(img, Image.Image) else img
|
40 |
+
cv2_img = cv2.cvtColor(cv2_img, cv2.COLOR_RGB2BGR)
|
41 |
+
cv2.imshow("image", cv2_img)
|
42 |
+
k = cv2.waitKey(0)
|
43 |
+
cv2.destroyAllWindows()
|
44 |
+
if k == ord("q") or k == ord("d"):
|
45 |
+
return k
|
46 |
+
return k
|
47 |
+
|
48 |
+
|
49 |
+
def show_console(
|
50 |
+
image: Union[list[Union[Image.Image, np.ndarray], Union[Image.Image, np.ndarray]]],
|
51 |
+
width: int,
|
52 |
+
back: str,
|
53 |
+
interactive: bool = False,
|
54 |
+
) -> int:
|
55 |
+
from ascii_magic import from_pillow_image, Back
|
56 |
+
|
57 |
+
back = None
|
58 |
+
if back is not None:
|
59 |
+
back = getattr(Back, back.upper())
|
60 |
+
|
61 |
+
k = None
|
62 |
+
imgs = (
|
63 |
+
[image]
|
64 |
+
if (isinstance(image, np.ndarray) and len(image.shape) == 3) or isinstance(image, Image.Image)
|
65 |
+
else [image[0], image[-1]]
|
66 |
+
)
|
67 |
+
if len(imgs) > 1:
|
68 |
+
print(f"Number of images: {len(image)}")
|
69 |
+
for i, img in enumerate(imgs):
|
70 |
+
if len(imgs) > 1:
|
71 |
+
print(f"{'First' if i == 0 else 'Last'} image: {img.shape}")
|
72 |
+
else:
|
73 |
+
print(f"Image: {img.shape}")
|
74 |
+
pil_img = img if isinstance(img, Image.Image) else Image.fromarray(img)
|
75 |
+
ascii_img = from_pillow_image(pil_img)
|
76 |
+
ascii_img.to_terminal(columns=width, back=back)
|
77 |
+
|
78 |
+
if interactive:
|
79 |
+
k = input("Press q to quit, d to next dataset, other key to next: ")
|
80 |
+
if k == "q" or k == "d":
|
81 |
+
return ord(k)
|
82 |
+
|
83 |
+
if not interactive:
|
84 |
+
return ord(" ")
|
85 |
+
return ord(k) if k else ord(" ")
|
86 |
+
|
87 |
+
|
88 |
+
def show_datasets(
|
89 |
+
datasets: list[BaseDataset], debug_mode: str, console_width: int, console_back: str, console_num_images: Optional[int]
|
90 |
+
):
|
91 |
+
print(f"d: next dataset, q: quit")
|
92 |
+
|
93 |
+
num_workers = max(1, os.cpu_count() - 1)
|
94 |
+
for i, dataset in enumerate(datasets):
|
95 |
+
print(f"Dataset [{i}]")
|
96 |
+
batch_index = 0
|
97 |
+
num_images_to_show = console_num_images
|
98 |
+
k = None
|
99 |
+
for key, batch in dataset.retrieve_latent_cache_batches(num_workers):
|
100 |
+
print(f"bucket resolution: {key}, count: {len(batch)}")
|
101 |
+
for j, item_info in enumerate(batch):
|
102 |
+
item_info: ItemInfo
|
103 |
+
print(f"{batch_index}-{j}: {item_info}")
|
104 |
+
if debug_mode == "image":
|
105 |
+
k = show_image(item_info.content)
|
106 |
+
elif debug_mode == "console":
|
107 |
+
k = show_console(item_info.content, console_width, console_back, console_num_images is None)
|
108 |
+
if num_images_to_show is not None:
|
109 |
+
num_images_to_show -= 1
|
110 |
+
if num_images_to_show == 0:
|
111 |
+
k = ord("d") # next dataset
|
112 |
+
|
113 |
+
if k == ord("q"):
|
114 |
+
return
|
115 |
+
elif k == ord("d"):
|
116 |
+
break
|
117 |
+
if k == ord("d"):
|
118 |
+
break
|
119 |
+
batch_index += 1
|
120 |
+
|
121 |
+
|
122 |
+
def encode_and_save_batch(vae: AutoencoderKLCausal3D, batch: list[ItemInfo]):
|
123 |
+
contents = torch.stack([torch.from_numpy(item.content) for item in batch])
|
124 |
+
if len(contents.shape) == 4:
|
125 |
+
contents = contents.unsqueeze(1) # B, H, W, C -> B, F, H, W, C
|
126 |
+
|
127 |
+
contents = contents.permute(0, 4, 1, 2, 3).contiguous() # B, C, F, H, W
|
128 |
+
contents = contents.to(vae.device, dtype=vae.dtype)
|
129 |
+
contents = contents / 127.5 - 1.0 # normalize to [-1, 1]
|
130 |
+
|
131 |
+
# print(f"encode batch: {contents.shape}")
|
132 |
+
with torch.no_grad():
|
133 |
+
latent = vae.encode(contents).latent_dist.sample()
|
134 |
+
latent = latent * vae.config.scaling_factor
|
135 |
+
|
136 |
+
# # debug: decode and save
|
137 |
+
# with torch.no_grad():
|
138 |
+
# latent_to_decode = latent / vae.config.scaling_factor
|
139 |
+
# images = vae.decode(latent_to_decode, return_dict=False)[0]
|
140 |
+
# images = (images / 2 + 0.5).clamp(0, 1)
|
141 |
+
# images = images.cpu().float().numpy()
|
142 |
+
# images = (images * 255).astype(np.uint8)
|
143 |
+
# images = images.transpose(0, 2, 3, 4, 1) # B, C, F, H, W -> B, F, H, W, C
|
144 |
+
# for b in range(images.shape[0]):
|
145 |
+
# for f in range(images.shape[1]):
|
146 |
+
# fln = os.path.splitext(os.path.basename(batch[b].item_key))[0]
|
147 |
+
# img = Image.fromarray(images[b, f])
|
148 |
+
# img.save(f"./logs/decode_{fln}_{b}_{f:03d}.jpg")
|
149 |
+
|
150 |
+
for item, l in zip(batch, latent):
|
151 |
+
# print(f"save latent cache: {item.latent_cache_path}, latent shape: {l.shape}")
|
152 |
+
save_latent_cache(item, l)
|
153 |
+
|
154 |
+
|
155 |
+
def main(args):
|
156 |
+
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
|
157 |
+
device = torch.device(device)
|
158 |
+
|
159 |
+
# Load dataset config
|
160 |
+
blueprint_generator = BlueprintGenerator(ConfigSanitizer())
|
161 |
+
logger.info(f"Load dataset config from {args.dataset_config}")
|
162 |
+
user_config = config_utils.load_user_config(args.dataset_config)
|
163 |
+
blueprint = blueprint_generator.generate(user_config, args)
|
164 |
+
train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
165 |
+
|
166 |
+
datasets = train_dataset_group.datasets
|
167 |
+
|
168 |
+
if args.debug_mode is not None:
|
169 |
+
show_datasets(datasets, args.debug_mode, args.console_width, args.console_back, args.console_num_images)
|
170 |
+
return
|
171 |
+
|
172 |
+
assert args.vae is not None, "vae checkpoint is required"
|
173 |
+
|
174 |
+
# Load VAE model: HunyuanVideo VAE model is float16
|
175 |
+
vae_dtype = torch.float16 if args.vae_dtype is None else str_to_dtype(args.vae_dtype)
|
176 |
+
vae, _, s_ratio, t_ratio = load_vae(vae_dtype=vae_dtype, device=device, vae_path=args.vae)
|
177 |
+
vae.eval()
|
178 |
+
print(f"Loaded VAE: {vae.config}, dtype: {vae.dtype}")
|
179 |
+
|
180 |
+
if args.vae_chunk_size is not None:
|
181 |
+
vae.set_chunk_size_for_causal_conv_3d(args.vae_chunk_size)
|
182 |
+
logger.info(f"Set chunk_size to {args.vae_chunk_size} for CausalConv3d in VAE")
|
183 |
+
if args.vae_spatial_tile_sample_min_size is not None:
|
184 |
+
vae.enable_spatial_tiling(True)
|
185 |
+
vae.tile_sample_min_size = args.vae_spatial_tile_sample_min_size
|
186 |
+
vae.tile_latent_min_size = args.vae_spatial_tile_sample_min_size // 8
|
187 |
+
elif args.vae_tiling:
|
188 |
+
vae.enable_spatial_tiling(True)
|
189 |
+
|
190 |
+
# Encode images
|
191 |
+
num_workers = args.num_workers if args.num_workers is not None else max(1, os.cpu_count() - 1)
|
192 |
+
for i, dataset in enumerate(datasets):
|
193 |
+
print(f"Encoding dataset [{i}]")
|
194 |
+
for _, batch in tqdm(dataset.retrieve_latent_cache_batches(num_workers)):
|
195 |
+
if args.skip_existing:
|
196 |
+
filtered_batch = [item for item in batch if not os.path.exists(item.latent_cache_path)]
|
197 |
+
if len(filtered_batch) == 0:
|
198 |
+
continue
|
199 |
+
batch = filtered_batch
|
200 |
+
|
201 |
+
bs = args.batch_size if args.batch_size is not None else len(batch)
|
202 |
+
for i in range(0, len(batch), bs):
|
203 |
+
encode_and_save_batch(vae, batch[i : i + bs])
|
204 |
+
|
205 |
+
|
206 |
+
def setup_parser():
|
207 |
+
parser = argparse.ArgumentParser()
|
208 |
+
|
209 |
+
parser.add_argument("--dataset_config", type=str, required=True, help="path to dataset config .toml file")
|
210 |
+
parser.add_argument("--vae", type=str, required=False, default=None, help="path to vae checkpoint")
|
211 |
+
parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is float16")
|
212 |
+
parser.add_argument(
|
213 |
+
"--vae_tiling",
|
214 |
+
action="store_true",
|
215 |
+
help="enable spatial tiling for VAE, default is False. If vae_spatial_tile_sample_min_size is set, this is automatically enabled",
|
216 |
+
)
|
217 |
+
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
|
218 |
+
parser.add_argument(
|
219 |
+
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
|
220 |
+
)
|
221 |
+
parser.add_argument("--device", type=str, default=None, help="device to use, default is cuda if available")
|
222 |
+
parser.add_argument(
|
223 |
+
"--batch_size", type=int, default=None, help="batch size, override dataset config if dataset batch size > this"
|
224 |
+
)
|
225 |
+
parser.add_argument("--num_workers", type=int, default=None, help="number of workers for dataset. default is cpu count-1")
|
226 |
+
parser.add_argument("--skip_existing", action="store_true", help="skip existing cache files")
|
227 |
+
parser.add_argument("--debug_mode", type=str, default=None, choices=["image", "console"], help="debug mode")
|
228 |
+
parser.add_argument("--console_width", type=int, default=80, help="debug mode: console width")
|
229 |
+
parser.add_argument(
|
230 |
+
"--console_back", type=str, default=None, help="debug mode: console background color, one of ascii_magic.Back"
|
231 |
+
)
|
232 |
+
parser.add_argument(
|
233 |
+
"--console_num_images",
|
234 |
+
type=int,
|
235 |
+
default=None,
|
236 |
+
help="debug mode: not interactive, number of images to show for each dataset",
|
237 |
+
)
|
238 |
+
return parser
|
239 |
+
|
240 |
+
|
241 |
+
if __name__ == "__main__":
|
242 |
+
parser = setup_parser()
|
243 |
+
|
244 |
+
args = parser.parse_args()
|
245 |
+
main(args)
|
cache_text_encoder_outputs.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from typing import Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from dataset import config_utils
|
10 |
+
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
|
11 |
+
import accelerate
|
12 |
+
|
13 |
+
from dataset.image_video_dataset import ItemInfo, save_text_encoder_output_cache
|
14 |
+
from hunyuan_model import text_encoder as text_encoder_module
|
15 |
+
from hunyuan_model.text_encoder import TextEncoder
|
16 |
+
|
17 |
+
import logging
|
18 |
+
|
19 |
+
from utils.model_utils import str_to_dtype
|
20 |
+
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
logging.basicConfig(level=logging.INFO)
|
23 |
+
|
24 |
+
|
25 |
+
def encode_prompt(text_encoder: TextEncoder, prompt: Union[str, list[str]]):
|
26 |
+
data_type = "video" # video only, image is not supported
|
27 |
+
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type)
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
|
31 |
+
|
32 |
+
return prompt_outputs.hidden_state, prompt_outputs.attention_mask
|
33 |
+
|
34 |
+
|
35 |
+
def encode_and_save_batch(
|
36 |
+
text_encoder: TextEncoder, batch: list[ItemInfo], is_llm: bool, accelerator: Optional[accelerate.Accelerator]
|
37 |
+
):
|
38 |
+
prompts = [item.caption for item in batch]
|
39 |
+
# print(prompts)
|
40 |
+
|
41 |
+
# encode prompt
|
42 |
+
if accelerator is not None:
|
43 |
+
with accelerator.autocast():
|
44 |
+
prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts)
|
45 |
+
else:
|
46 |
+
prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts)
|
47 |
+
|
48 |
+
# # convert to fp16 if needed
|
49 |
+
# if prompt_embeds.dtype == torch.float32 and text_encoder.dtype != torch.float32:
|
50 |
+
# prompt_embeds = prompt_embeds.to(text_encoder.dtype)
|
51 |
+
|
52 |
+
# save prompt cache
|
53 |
+
for item, embed, mask in zip(batch, prompt_embeds, prompt_mask):
|
54 |
+
save_text_encoder_output_cache(item, embed, mask, is_llm)
|
55 |
+
|
56 |
+
|
57 |
+
def main(args):
|
58 |
+
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
|
59 |
+
device = torch.device(device)
|
60 |
+
|
61 |
+
# Load dataset config
|
62 |
+
blueprint_generator = BlueprintGenerator(ConfigSanitizer())
|
63 |
+
logger.info(f"Load dataset config from {args.dataset_config}")
|
64 |
+
user_config = config_utils.load_user_config(args.dataset_config)
|
65 |
+
blueprint = blueprint_generator.generate(user_config, args)
|
66 |
+
train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
67 |
+
|
68 |
+
datasets = train_dataset_group.datasets
|
69 |
+
|
70 |
+
# define accelerator for fp8 inference
|
71 |
+
accelerator = None
|
72 |
+
if args.fp8_llm:
|
73 |
+
accelerator = accelerate.Accelerator(mixed_precision="fp16")
|
74 |
+
|
75 |
+
# define encode function
|
76 |
+
num_workers = args.num_workers if args.num_workers is not None else max(1, os.cpu_count() - 1)
|
77 |
+
|
78 |
+
def encode_for_text_encoder(text_encoder: TextEncoder, is_llm: bool):
|
79 |
+
for i, dataset in enumerate(datasets):
|
80 |
+
print(f"Encoding dataset [{i}]")
|
81 |
+
for batch in tqdm(dataset.retrieve_text_encoder_output_cache_batches(num_workers)):
|
82 |
+
if args.skip_existing:
|
83 |
+
filtered_batch = [item for item in batch if not os.path.exists(item.text_encoder_output_cache_path)]
|
84 |
+
if len(filtered_batch) == 0:
|
85 |
+
continue
|
86 |
+
batch = filtered_batch
|
87 |
+
|
88 |
+
bs = args.batch_size if args.batch_size is not None else len(batch)
|
89 |
+
for i in range(0, len(batch), bs):
|
90 |
+
encode_and_save_batch(text_encoder, batch[i : i + bs], is_llm, accelerator)
|
91 |
+
|
92 |
+
# Load Text Encoder 1
|
93 |
+
text_encoder_dtype = torch.float16 if args.text_encoder_dtype is None else str_to_dtype(args.text_encoder_dtype)
|
94 |
+
logger.info(f"loading text encoder 1: {args.text_encoder1}")
|
95 |
+
text_encoder_1 = text_encoder_module.load_text_encoder_1(args.text_encoder1, device, args.fp8_llm, text_encoder_dtype)
|
96 |
+
text_encoder_1.to(device=device)
|
97 |
+
|
98 |
+
# Encode with Text Encoder 1
|
99 |
+
logger.info("Encoding with Text Encoder 1")
|
100 |
+
encode_for_text_encoder(text_encoder_1, is_llm=True)
|
101 |
+
del text_encoder_1
|
102 |
+
|
103 |
+
# Load Text Encoder 2
|
104 |
+
logger.info(f"loading text encoder 2: {args.text_encoder2}")
|
105 |
+
text_encoder_2 = text_encoder_module.load_text_encoder_2(args.text_encoder2, device, text_encoder_dtype)
|
106 |
+
text_encoder_2.to(device=device)
|
107 |
+
|
108 |
+
# Encode with Text Encoder 2
|
109 |
+
logger.info("Encoding with Text Encoder 2")
|
110 |
+
encode_for_text_encoder(text_encoder_2, is_llm=False)
|
111 |
+
del text_encoder_2
|
112 |
+
|
113 |
+
|
114 |
+
def setup_parser():
|
115 |
+
parser = argparse.ArgumentParser()
|
116 |
+
|
117 |
+
parser.add_argument("--dataset_config", type=str, required=True, help="path to dataset config .toml file")
|
118 |
+
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory")
|
119 |
+
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory")
|
120 |
+
parser.add_argument("--device", type=str, default=None, help="device to use, default is cuda if available")
|
121 |
+
parser.add_argument("--text_encoder_dtype", type=str, default=None, help="data type for Text Encoder, default is float16")
|
122 |
+
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
|
123 |
+
parser.add_argument(
|
124 |
+
"--batch_size", type=int, default=None, help="batch size, override dataset config if dataset batch size > this"
|
125 |
+
)
|
126 |
+
parser.add_argument("--num_workers", type=int, default=None, help="number of workers for dataset. default is cpu count-1")
|
127 |
+
parser.add_argument("--skip_existing", action="store_true", help="skip existing cache files")
|
128 |
+
return parser
|
129 |
+
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
parser = setup_parser()
|
133 |
+
|
134 |
+
args = parser.parse_args()
|
135 |
+
main(args)
|
convert_lora.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from safetensors.torch import load_file, save_file
|
5 |
+
from safetensors import safe_open
|
6 |
+
from utils import model_utils
|
7 |
+
|
8 |
+
import logging
|
9 |
+
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
|
14 |
+
|
15 |
+
def convert_from_diffusers(prefix, weights_sd):
|
16 |
+
# convert from diffusers(?) to default LoRA
|
17 |
+
# Diffusers format: {"diffusion_model.module.name.lora_A.weight": weight, "diffusion_model.module.name.lora_B.weight": weight, ...}
|
18 |
+
# default LoRA format: {"prefix_module_name.lora_down.weight": weight, "prefix_module_name.lora_up.weight": weight, ...}
|
19 |
+
# note: Diffusers has no alpha, so alpha is set to rank
|
20 |
+
new_weights_sd = {}
|
21 |
+
lora_dims = {}
|
22 |
+
for key, weight in weights_sd.items():
|
23 |
+
diffusers_prefix, key_body = key.split(".", 1)
|
24 |
+
if diffusers_prefix != "diffusion_model":
|
25 |
+
logger.warning(f"unexpected key: {key} in diffusers format")
|
26 |
+
continue
|
27 |
+
|
28 |
+
new_key = f"{prefix}{key_body}".replace(".", "_").replace("_lora_A_", ".lora_down.").replace("_lora_B_", ".lora_up.")
|
29 |
+
new_weights_sd[new_key] = weight
|
30 |
+
|
31 |
+
lora_name = new_key.split(".")[0] # before first dot
|
32 |
+
if lora_name not in lora_dims and "lora_down" in new_key:
|
33 |
+
lora_dims[lora_name] = weight.shape[0]
|
34 |
+
|
35 |
+
# add alpha with rank
|
36 |
+
for lora_name, dim in lora_dims.items():
|
37 |
+
new_weights_sd[f"{lora_name}.alpha"] = torch.tensor(dim)
|
38 |
+
|
39 |
+
return new_weights_sd
|
40 |
+
|
41 |
+
|
42 |
+
def convert_to_diffusers(prefix, weights_sd):
|
43 |
+
# convert from default LoRA to diffusers
|
44 |
+
|
45 |
+
# get alphas
|
46 |
+
lora_alphas = {}
|
47 |
+
for key, weight in weights_sd.items():
|
48 |
+
if key.startswith(prefix):
|
49 |
+
lora_name = key.split(".", 1)[0] # before first dot
|
50 |
+
if lora_name not in lora_alphas and "alpha" in key:
|
51 |
+
lora_alphas[lora_name] = weight
|
52 |
+
|
53 |
+
new_weights_sd = {}
|
54 |
+
for key, weight in weights_sd.items():
|
55 |
+
if key.startswith(prefix):
|
56 |
+
if "alpha" in key:
|
57 |
+
continue
|
58 |
+
|
59 |
+
lora_name = key.split(".", 1)[0] # before first dot
|
60 |
+
|
61 |
+
# HunyuanVideo lora name to module name: ugly but works
|
62 |
+
module_name = lora_name[len(prefix) :] # remove "lora_unet_"
|
63 |
+
module_name = module_name.replace("_", ".") # replace "_" with "."
|
64 |
+
module_name = module_name.replace("double.blocks.", "double_blocks.") # fix double blocks
|
65 |
+
module_name = module_name.replace("single.blocks.", "single_blocks.") # fix single blocks
|
66 |
+
module_name = module_name.replace("img.", "img_") # fix img
|
67 |
+
module_name = module_name.replace("txt.", "txt_") # fix txt
|
68 |
+
module_name = module_name.replace("attn.", "attn_") # fix attn
|
69 |
+
|
70 |
+
diffusers_prefix = "diffusion_model"
|
71 |
+
if "lora_down" in key:
|
72 |
+
new_key = f"{diffusers_prefix}.{module_name}.lora_A.weight"
|
73 |
+
dim = weight.shape[0]
|
74 |
+
elif "lora_up" in key:
|
75 |
+
new_key = f"{diffusers_prefix}.{module_name}.lora_B.weight"
|
76 |
+
dim = weight.shape[1]
|
77 |
+
else:
|
78 |
+
logger.warning(f"unexpected key: {key} in default LoRA format")
|
79 |
+
continue
|
80 |
+
|
81 |
+
# scale weight by alpha
|
82 |
+
if lora_name in lora_alphas:
|
83 |
+
# we scale both down and up, so scale is sqrt
|
84 |
+
scale = lora_alphas[lora_name] / dim
|
85 |
+
scale = scale.sqrt()
|
86 |
+
weight = weight * scale
|
87 |
+
else:
|
88 |
+
logger.warning(f"missing alpha for {lora_name}")
|
89 |
+
|
90 |
+
new_weights_sd[new_key] = weight
|
91 |
+
|
92 |
+
return new_weights_sd
|
93 |
+
|
94 |
+
|
95 |
+
def convert(input_file, output_file, target_format):
|
96 |
+
logger.info(f"loading {input_file}")
|
97 |
+
weights_sd = load_file(input_file)
|
98 |
+
with safe_open(input_file, framework="pt") as f:
|
99 |
+
metadata = f.metadata()
|
100 |
+
|
101 |
+
logger.info(f"converting to {target_format}")
|
102 |
+
prefix = "lora_unet_"
|
103 |
+
if target_format == "default":
|
104 |
+
new_weights_sd = convert_from_diffusers(prefix, weights_sd)
|
105 |
+
metadata = metadata or {}
|
106 |
+
model_utils.precalculate_safetensors_hashes(new_weights_sd, metadata)
|
107 |
+
elif target_format == "other":
|
108 |
+
new_weights_sd = convert_to_diffusers(prefix, weights_sd)
|
109 |
+
else:
|
110 |
+
raise ValueError(f"unknown target format: {target_format}")
|
111 |
+
|
112 |
+
logger.info(f"saving to {output_file}")
|
113 |
+
save_file(new_weights_sd, output_file, metadata=metadata)
|
114 |
+
|
115 |
+
logger.info("done")
|
116 |
+
|
117 |
+
|
118 |
+
def parse_args():
|
119 |
+
parser = argparse.ArgumentParser(description="Convert LoRA weights between default and other formats")
|
120 |
+
parser.add_argument("--input", type=str, required=True, help="input model file")
|
121 |
+
parser.add_argument("--output", type=str, required=True, help="output model file")
|
122 |
+
parser.add_argument("--target", type=str, required=True, choices=["other", "default"], help="target format")
|
123 |
+
args = parser.parse_args()
|
124 |
+
return args
|
125 |
+
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
args = parse_args()
|
129 |
+
convert(args.input, args.output, args.target)
|
dataset/__init__.py
ADDED
File without changes
|
dataset/config_utils.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from dataclasses import (
|
3 |
+
asdict,
|
4 |
+
dataclass,
|
5 |
+
)
|
6 |
+
import functools
|
7 |
+
import random
|
8 |
+
from textwrap import dedent, indent
|
9 |
+
import json
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
# from toolz import curry
|
13 |
+
from typing import Dict, List, Optional, Sequence, Tuple, Union
|
14 |
+
|
15 |
+
import toml
|
16 |
+
import voluptuous
|
17 |
+
from voluptuous import Any, ExactSequence, MultipleInvalid, Object, Schema
|
18 |
+
|
19 |
+
from .image_video_dataset import DatasetGroup, ImageDataset, VideoDataset
|
20 |
+
|
21 |
+
import logging
|
22 |
+
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
logging.basicConfig(level=logging.INFO)
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class BaseDatasetParams:
|
29 |
+
resolution: Tuple[int, int] = (960, 544)
|
30 |
+
enable_bucket: bool = False
|
31 |
+
bucket_no_upscale: bool = False
|
32 |
+
caption_extension: Optional[str] = None
|
33 |
+
batch_size: int = 1
|
34 |
+
cache_directory: Optional[str] = None
|
35 |
+
debug_dataset: bool = False
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass
|
39 |
+
class ImageDatasetParams(BaseDatasetParams):
|
40 |
+
image_directory: Optional[str] = None
|
41 |
+
image_jsonl_file: Optional[str] = None
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class VideoDatasetParams(BaseDatasetParams):
|
46 |
+
video_directory: Optional[str] = None
|
47 |
+
video_jsonl_file: Optional[str] = None
|
48 |
+
target_frames: Sequence[int] = (1,)
|
49 |
+
frame_extraction: Optional[str] = "head"
|
50 |
+
frame_stride: Optional[int] = 1
|
51 |
+
frame_sample: Optional[int] = 1
|
52 |
+
|
53 |
+
|
54 |
+
@dataclass
|
55 |
+
class DatasetBlueprint:
|
56 |
+
is_image_dataset: bool
|
57 |
+
params: Union[ImageDatasetParams, VideoDatasetParams]
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class DatasetGroupBlueprint:
|
62 |
+
datasets: Sequence[DatasetBlueprint]
|
63 |
+
|
64 |
+
|
65 |
+
@dataclass
|
66 |
+
class Blueprint:
|
67 |
+
dataset_group: DatasetGroupBlueprint
|
68 |
+
|
69 |
+
|
70 |
+
class ConfigSanitizer:
|
71 |
+
# @curry
|
72 |
+
@staticmethod
|
73 |
+
def __validate_and_convert_twodim(klass, value: Sequence) -> Tuple:
|
74 |
+
Schema(ExactSequence([klass, klass]))(value)
|
75 |
+
return tuple(value)
|
76 |
+
|
77 |
+
# @curry
|
78 |
+
@staticmethod
|
79 |
+
def __validate_and_convert_scalar_or_twodim(klass, value: Union[float, Sequence]) -> Tuple:
|
80 |
+
Schema(Any(klass, ExactSequence([klass, klass])))(value)
|
81 |
+
try:
|
82 |
+
Schema(klass)(value)
|
83 |
+
return (value, value)
|
84 |
+
except:
|
85 |
+
return ConfigSanitizer.__validate_and_convert_twodim(klass, value)
|
86 |
+
|
87 |
+
# datasets schema
|
88 |
+
DATASET_ASCENDABLE_SCHEMA = {
|
89 |
+
"caption_extension": str,
|
90 |
+
"batch_size": int,
|
91 |
+
"resolution": functools.partial(__validate_and_convert_scalar_or_twodim.__func__, int),
|
92 |
+
"enable_bucket": bool,
|
93 |
+
"bucket_no_upscale": bool,
|
94 |
+
}
|
95 |
+
IMAGE_DATASET_DISTINCT_SCHEMA = {
|
96 |
+
"image_directory": str,
|
97 |
+
"image_jsonl_file": str,
|
98 |
+
"cache_directory": str,
|
99 |
+
}
|
100 |
+
VIDEO_DATASET_DISTINCT_SCHEMA = {
|
101 |
+
"video_directory": str,
|
102 |
+
"video_jsonl_file": str,
|
103 |
+
"target_frames": [int],
|
104 |
+
"frame_extraction": str,
|
105 |
+
"frame_stride": int,
|
106 |
+
"frame_sample": int,
|
107 |
+
"cache_directory": str,
|
108 |
+
}
|
109 |
+
|
110 |
+
# options handled by argparse but not handled by user config
|
111 |
+
ARGPARSE_SPECIFIC_SCHEMA = {
|
112 |
+
"debug_dataset": bool,
|
113 |
+
}
|
114 |
+
|
115 |
+
def __init__(self) -> None:
|
116 |
+
self.image_dataset_schema = self.__merge_dict(
|
117 |
+
self.DATASET_ASCENDABLE_SCHEMA,
|
118 |
+
self.IMAGE_DATASET_DISTINCT_SCHEMA,
|
119 |
+
)
|
120 |
+
self.video_dataset_schema = self.__merge_dict(
|
121 |
+
self.DATASET_ASCENDABLE_SCHEMA,
|
122 |
+
self.VIDEO_DATASET_DISTINCT_SCHEMA,
|
123 |
+
)
|
124 |
+
|
125 |
+
def validate_flex_dataset(dataset_config: dict):
|
126 |
+
if "target_frames" in dataset_config:
|
127 |
+
return Schema(self.video_dataset_schema)(dataset_config)
|
128 |
+
else:
|
129 |
+
return Schema(self.image_dataset_schema)(dataset_config)
|
130 |
+
|
131 |
+
self.dataset_schema = validate_flex_dataset
|
132 |
+
|
133 |
+
self.general_schema = self.__merge_dict(
|
134 |
+
self.DATASET_ASCENDABLE_SCHEMA,
|
135 |
+
)
|
136 |
+
self.user_config_validator = Schema(
|
137 |
+
{
|
138 |
+
"general": self.general_schema,
|
139 |
+
"datasets": [self.dataset_schema],
|
140 |
+
}
|
141 |
+
)
|
142 |
+
self.argparse_schema = self.__merge_dict(
|
143 |
+
self.ARGPARSE_SPECIFIC_SCHEMA,
|
144 |
+
)
|
145 |
+
self.argparse_config_validator = Schema(Object(self.argparse_schema), extra=voluptuous.ALLOW_EXTRA)
|
146 |
+
|
147 |
+
def sanitize_user_config(self, user_config: dict) -> dict:
|
148 |
+
try:
|
149 |
+
return self.user_config_validator(user_config)
|
150 |
+
except MultipleInvalid:
|
151 |
+
# TODO: clarify the error message
|
152 |
+
logger.error("Invalid user config / ユーザ設定の形式が正しくないようです")
|
153 |
+
raise
|
154 |
+
|
155 |
+
# NOTE: In nature, argument parser result is not needed to be sanitize
|
156 |
+
# However this will help us to detect program bug
|
157 |
+
def sanitize_argparse_namespace(self, argparse_namespace: argparse.Namespace) -> argparse.Namespace:
|
158 |
+
try:
|
159 |
+
return self.argparse_config_validator(argparse_namespace)
|
160 |
+
except MultipleInvalid:
|
161 |
+
# XXX: this should be a bug
|
162 |
+
logger.error(
|
163 |
+
"Invalid cmdline parsed arguments. This should be a bug. / コマンドラインのパース結果が正しくないようです。プログラムのバグの可能性が高いです。"
|
164 |
+
)
|
165 |
+
raise
|
166 |
+
|
167 |
+
# NOTE: value would be overwritten by latter dict if there is already the same key
|
168 |
+
@staticmethod
|
169 |
+
def __merge_dict(*dict_list: dict) -> dict:
|
170 |
+
merged = {}
|
171 |
+
for schema in dict_list:
|
172 |
+
# merged |= schema
|
173 |
+
for k, v in schema.items():
|
174 |
+
merged[k] = v
|
175 |
+
return merged
|
176 |
+
|
177 |
+
|
178 |
+
class BlueprintGenerator:
|
179 |
+
BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME = {}
|
180 |
+
|
181 |
+
def __init__(self, sanitizer: ConfigSanitizer):
|
182 |
+
self.sanitizer = sanitizer
|
183 |
+
|
184 |
+
# runtime_params is for parameters which is only configurable on runtime, such as tokenizer
|
185 |
+
def generate(self, user_config: dict, argparse_namespace: argparse.Namespace, **runtime_params) -> Blueprint:
|
186 |
+
sanitized_user_config = self.sanitizer.sanitize_user_config(user_config)
|
187 |
+
sanitized_argparse_namespace = self.sanitizer.sanitize_argparse_namespace(argparse_namespace)
|
188 |
+
|
189 |
+
argparse_config = {k: v for k, v in vars(sanitized_argparse_namespace).items() if v is not None}
|
190 |
+
general_config = sanitized_user_config.get("general", {})
|
191 |
+
|
192 |
+
dataset_blueprints = []
|
193 |
+
for dataset_config in sanitized_user_config.get("datasets", []):
|
194 |
+
is_image_dataset = "target_frames" not in dataset_config
|
195 |
+
if is_image_dataset:
|
196 |
+
dataset_params_klass = ImageDatasetParams
|
197 |
+
else:
|
198 |
+
dataset_params_klass = VideoDatasetParams
|
199 |
+
|
200 |
+
params = self.generate_params_by_fallbacks(
|
201 |
+
dataset_params_klass, [dataset_config, general_config, argparse_config, runtime_params]
|
202 |
+
)
|
203 |
+
dataset_blueprints.append(DatasetBlueprint(is_image_dataset, params))
|
204 |
+
|
205 |
+
dataset_group_blueprint = DatasetGroupBlueprint(dataset_blueprints)
|
206 |
+
|
207 |
+
return Blueprint(dataset_group_blueprint)
|
208 |
+
|
209 |
+
@staticmethod
|
210 |
+
def generate_params_by_fallbacks(param_klass, fallbacks: Sequence[dict]):
|
211 |
+
name_map = BlueprintGenerator.BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME
|
212 |
+
search_value = BlueprintGenerator.search_value
|
213 |
+
default_params = asdict(param_klass())
|
214 |
+
param_names = default_params.keys()
|
215 |
+
|
216 |
+
params = {name: search_value(name_map.get(name, name), fallbacks, default_params.get(name)) for name in param_names}
|
217 |
+
|
218 |
+
return param_klass(**params)
|
219 |
+
|
220 |
+
@staticmethod
|
221 |
+
def search_value(key: str, fallbacks: Sequence[dict], default_value=None):
|
222 |
+
for cand in fallbacks:
|
223 |
+
value = cand.get(key)
|
224 |
+
if value is not None:
|
225 |
+
return value
|
226 |
+
|
227 |
+
return default_value
|
228 |
+
|
229 |
+
|
230 |
+
# if training is True, it will return a dataset group for training, otherwise for caching
|
231 |
+
def generate_dataset_group_by_blueprint(dataset_group_blueprint: DatasetGroupBlueprint, training: bool = False) -> DatasetGroup:
|
232 |
+
datasets: List[Union[ImageDataset, VideoDataset]] = []
|
233 |
+
|
234 |
+
for dataset_blueprint in dataset_group_blueprint.datasets:
|
235 |
+
if dataset_blueprint.is_image_dataset:
|
236 |
+
dataset_klass = ImageDataset
|
237 |
+
else:
|
238 |
+
dataset_klass = VideoDataset
|
239 |
+
|
240 |
+
dataset = dataset_klass(**asdict(dataset_blueprint.params))
|
241 |
+
datasets.append(dataset)
|
242 |
+
|
243 |
+
# print info
|
244 |
+
info = ""
|
245 |
+
for i, dataset in enumerate(datasets):
|
246 |
+
is_image_dataset = isinstance(dataset, ImageDataset)
|
247 |
+
info += dedent(
|
248 |
+
f"""\
|
249 |
+
[Dataset {i}]
|
250 |
+
is_image_dataset: {is_image_dataset}
|
251 |
+
resolution: {dataset.resolution}
|
252 |
+
batch_size: {dataset.batch_size}
|
253 |
+
caption_extension: "{dataset.caption_extension}"
|
254 |
+
enable_bucket: {dataset.enable_bucket}
|
255 |
+
bucket_no_upscale: {dataset.bucket_no_upscale}
|
256 |
+
cache_directory: "{dataset.cache_directory}"
|
257 |
+
debug_dataset: {dataset.debug_dataset}
|
258 |
+
"""
|
259 |
+
)
|
260 |
+
|
261 |
+
if is_image_dataset:
|
262 |
+
info += indent(
|
263 |
+
dedent(
|
264 |
+
f"""\
|
265 |
+
image_directory: "{dataset.image_directory}"
|
266 |
+
image_jsonl_file: "{dataset.image_jsonl_file}"
|
267 |
+
\n"""
|
268 |
+
),
|
269 |
+
" ",
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
info += indent(
|
273 |
+
dedent(
|
274 |
+
f"""\
|
275 |
+
video_directory: "{dataset.video_directory}"
|
276 |
+
video_jsonl_file: "{dataset.video_jsonl_file}"
|
277 |
+
target_frames: {dataset.target_frames}
|
278 |
+
frame_extraction: {dataset.frame_extraction}
|
279 |
+
frame_stride: {dataset.frame_stride}
|
280 |
+
frame_sample: {dataset.frame_sample}
|
281 |
+
\n"""
|
282 |
+
),
|
283 |
+
" ",
|
284 |
+
)
|
285 |
+
logger.info(f"{info}")
|
286 |
+
|
287 |
+
# make buckets first because it determines the length of dataset
|
288 |
+
# and set the same seed for all datasets
|
289 |
+
seed = random.randint(0, 2**31) # actual seed is seed + epoch_no
|
290 |
+
for i, dataset in enumerate(datasets):
|
291 |
+
# logger.info(f"[Dataset {i}]")
|
292 |
+
dataset.set_seed(seed)
|
293 |
+
if training:
|
294 |
+
dataset.prepare_for_training()
|
295 |
+
|
296 |
+
return DatasetGroup(datasets)
|
297 |
+
|
298 |
+
|
299 |
+
def load_user_config(file: str) -> dict:
|
300 |
+
file: Path = Path(file)
|
301 |
+
if not file.is_file():
|
302 |
+
raise ValueError(f"file not found / ファイルが見つかりません: {file}")
|
303 |
+
|
304 |
+
if file.name.lower().endswith(".json"):
|
305 |
+
try:
|
306 |
+
with open(file, "r") as f:
|
307 |
+
config = json.load(f)
|
308 |
+
except Exception:
|
309 |
+
logger.error(
|
310 |
+
f"Error on parsing JSON config file. Please check the format. / JSON 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}"
|
311 |
+
)
|
312 |
+
raise
|
313 |
+
elif file.name.lower().endswith(".toml"):
|
314 |
+
try:
|
315 |
+
config = toml.load(file)
|
316 |
+
except Exception:
|
317 |
+
logger.error(
|
318 |
+
f"Error on parsing TOML config file. Please check the format. / TOML 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}"
|
319 |
+
)
|
320 |
+
raise
|
321 |
+
else:
|
322 |
+
raise ValueError(f"not supported config file format / 対応していない設定ファイルの形式です: {file}")
|
323 |
+
|
324 |
+
return config
|
325 |
+
|
326 |
+
|
327 |
+
# for config test
|
328 |
+
if __name__ == "__main__":
|
329 |
+
parser = argparse.ArgumentParser()
|
330 |
+
parser.add_argument("dataset_config")
|
331 |
+
config_args, remain = parser.parse_known_args()
|
332 |
+
|
333 |
+
parser = argparse.ArgumentParser()
|
334 |
+
parser.add_argument("--debug_dataset", action="store_true")
|
335 |
+
argparse_namespace = parser.parse_args(remain)
|
336 |
+
|
337 |
+
logger.info("[argparse_namespace]")
|
338 |
+
logger.info(f"{vars(argparse_namespace)}")
|
339 |
+
|
340 |
+
user_config = load_user_config(config_args.dataset_config)
|
341 |
+
|
342 |
+
logger.info("")
|
343 |
+
logger.info("[user_config]")
|
344 |
+
logger.info(f"{user_config}")
|
345 |
+
|
346 |
+
sanitizer = ConfigSanitizer()
|
347 |
+
sanitized_user_config = sanitizer.sanitize_user_config(user_config)
|
348 |
+
|
349 |
+
logger.info("")
|
350 |
+
logger.info("[sanitized_user_config]")
|
351 |
+
logger.info(f"{sanitized_user_config}")
|
352 |
+
|
353 |
+
blueprint = BlueprintGenerator(sanitizer).generate(user_config, argparse_namespace)
|
354 |
+
|
355 |
+
logger.info("")
|
356 |
+
logger.info("[blueprint]")
|
357 |
+
logger.info(f"{blueprint}")
|
358 |
+
|
359 |
+
dataset_group = generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
dataset/dataset_config.md
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Dataset Configuration
|
2 |
+
|
3 |
+
Please create a TOML file for dataset configuration.
|
4 |
+
|
5 |
+
Image and video datasets are supported. The configuration file can include multiple datasets, either image or video datasets, with caption text files or metadata JSONL files.
|
6 |
+
|
7 |
+
### Sample for Image Dataset with Caption Text Files
|
8 |
+
|
9 |
+
```toml
|
10 |
+
# resolution, caption_extension, batch_size, enable_bucket, bucket_no_upscale must be set in either general or datasets
|
11 |
+
|
12 |
+
# general configurations
|
13 |
+
[general]
|
14 |
+
resolution = [960, 544]
|
15 |
+
caption_extension = ".txt"
|
16 |
+
batch_size = 1
|
17 |
+
enable_bucket = true
|
18 |
+
bucket_no_upscale = false
|
19 |
+
|
20 |
+
[[datasets]]
|
21 |
+
image_directory = "/path/to/image_dir"
|
22 |
+
|
23 |
+
# other datasets can be added here. each dataset can have different configurations
|
24 |
+
```
|
25 |
+
|
26 |
+
### Sample for Image Dataset with Metadata JSONL File
|
27 |
+
|
28 |
+
```toml
|
29 |
+
# resolution, batch_size, enable_bucket, bucket_no_upscale must be set in either general or datasets
|
30 |
+
# caption_extension is not required for metadata jsonl file
|
31 |
+
# cache_directory is required for each dataset with metadata jsonl file
|
32 |
+
|
33 |
+
# general configurations
|
34 |
+
[general]
|
35 |
+
resolution = [960, 544]
|
36 |
+
batch_size = 1
|
37 |
+
enable_bucket = true
|
38 |
+
bucket_no_upscale = false
|
39 |
+
|
40 |
+
[[datasets]]
|
41 |
+
image_jsonl_file = "/path/to/metadata.jsonl"
|
42 |
+
cache_directory = "/path/to/cache_directory"
|
43 |
+
|
44 |
+
# other datasets can be added here. each dataset can have different configurations
|
45 |
+
```
|
46 |
+
|
47 |
+
JSONL file format for metadata:
|
48 |
+
|
49 |
+
```json
|
50 |
+
{"image_path": "/path/to/image1.jpg", "caption": "A caption for image1"}
|
51 |
+
{"image_path": "/path/to/image2.jpg", "caption": "A caption for image2"}
|
52 |
+
```
|
53 |
+
|
54 |
+
### Sample for Video Dataset with Caption Text Files
|
55 |
+
|
56 |
+
```toml
|
57 |
+
# resolution, caption_extension, target_frames, frame_extraction, frame_stride, frame_sample, batch_size, enable_bucket, bucket_no_upscale must be set in either general or datasets
|
58 |
+
|
59 |
+
# general configurations
|
60 |
+
[general]
|
61 |
+
resolution = [960, 544]
|
62 |
+
caption_extension = ".txt"
|
63 |
+
batch_size = 1
|
64 |
+
enable_bucket = true
|
65 |
+
bucket_no_upscale = false
|
66 |
+
|
67 |
+
[[datasets]]
|
68 |
+
video_directory = "/path/to/video_dir"
|
69 |
+
target_frames = [1, 25, 45]
|
70 |
+
frame_extraction = "head"
|
71 |
+
|
72 |
+
# other datasets can be added here. each dataset can have different configurations
|
73 |
+
```
|
74 |
+
|
75 |
+
### Sample for Video Dataset with Metadata JSONL File
|
76 |
+
|
77 |
+
```toml
|
78 |
+
# resolution, target_frames, frame_extraction, frame_stride, frame_sample, batch_size, enable_bucket, bucket_no_upscale must be set in either general or datasets
|
79 |
+
# caption_extension is not required for metadata jsonl file
|
80 |
+
# cache_directory is required for each dataset with metadata jsonl file
|
81 |
+
|
82 |
+
# general configurations
|
83 |
+
[general]
|
84 |
+
resolution = [960, 544]
|
85 |
+
batch_size = 1
|
86 |
+
enable_bucket = true
|
87 |
+
bucket_no_upscale = false
|
88 |
+
|
89 |
+
[[datasets]]
|
90 |
+
video_jsonl_file = "/path/to/metadata.jsonl"
|
91 |
+
target_frames = [1, 25, 45]
|
92 |
+
frame_extraction = "head"
|
93 |
+
cache_directory = "/path/to/cache_directory"
|
94 |
+
|
95 |
+
# same metadata jsonl file can be used for multiple datasets
|
96 |
+
[[datasets]]
|
97 |
+
video_jsonl_file = "/path/to/metadata.jsonl"
|
98 |
+
target_frames = [1]
|
99 |
+
frame_stride = 10
|
100 |
+
cache_directory = "/path/to/cache_directory"
|
101 |
+
|
102 |
+
# other datasets can be added here. each dataset can have different configurations
|
103 |
+
```
|
104 |
+
|
105 |
+
JSONL file format for metadata:
|
106 |
+
|
107 |
+
```json
|
108 |
+
{"video_path": "/path/to/video1.mp4", "caption": "A caption for video1"}
|
109 |
+
{"video_path": "/path/to/video2.mp4", "caption": "A caption for video2"}
|
110 |
+
```
|
111 |
+
|
112 |
+
### fame_extraction Options
|
113 |
+
|
114 |
+
- `head`: Extract the first N frames from the video.
|
115 |
+
- `chunk`: Extract frames by splitting the video into chunks of N frames.
|
116 |
+
- `slide`: Extract frames from the video with a stride of `frame_stride`.
|
117 |
+
- `uniform`: Extract `frame_sample` samples uniformly from the video.
|
118 |
+
|
119 |
+
For example, consider a video with 40 frames. The following diagrams illustrate each extraction:
|
120 |
+
|
121 |
+
```
|
122 |
+
Original Video, 40 frames: x = frame, o = no frame
|
123 |
+
oooooooooooooooooooooooooooooooooooooooo
|
124 |
+
|
125 |
+
head, target_frames = [1, 13, 25] -> extract head frames:
|
126 |
+
xooooooooooooooooooooooooooooooooooooooo
|
127 |
+
xxxxxxxxxxxxxooooooooooooooooooooooooooo
|
128 |
+
xxxxxxxxxxxxxxxxxxxxxxxxxooooooooooooooo
|
129 |
+
|
130 |
+
chunk, target_frames = [13, 25] -> extract frames by splitting into chunks, into 13 and 25 frames:
|
131 |
+
xxxxxxxxxxxxxooooooooooooooooooooooooooo
|
132 |
+
oooooooooooooxxxxxxxxxxxxxoooooooooooooo
|
133 |
+
ooooooooooooooooooooooooooxxxxxxxxxxxxxo
|
134 |
+
xxxxxxxxxxxxxxxxxxxxxxxxxooooooooooooooo
|
135 |
+
|
136 |
+
NOTE: Please do not include 1 in target_frames if you are using the frame_extraction "chunk". It will make the all frames to be extracted.
|
137 |
+
|
138 |
+
slide, target_frames = [1, 13, 25], frame_stride = 10 -> extract N frames with a stride of 10:
|
139 |
+
xooooooooooooooooooooooooooooooooooooooo
|
140 |
+
ooooooooooxooooooooooooooooooooooooooooo
|
141 |
+
ooooooooooooooooooooxooooooooooooooooooo
|
142 |
+
ooooooooooooooooooooooooooooooxooooooooo
|
143 |
+
xxxxxxxxxxxxxooooooooooooooooooooooooooo
|
144 |
+
ooooooooooxxxxxxxxxxxxxooooooooooooooooo
|
145 |
+
ooooooooooooooooooooxxxxxxxxxxxxxooooooo
|
146 |
+
xxxxxxxxxxxxxxxxxxxxxxxxxooooooooooooooo
|
147 |
+
ooooooooooxxxxxxxxxxxxxxxxxxxxxxxxxooooo
|
148 |
+
|
149 |
+
uniform, target_frames =[1, 13, 25], frame_sample = 4 -> extract `frame_sample` samples uniformly, N frames each:
|
150 |
+
xooooooooooooooooooooooooooooooooooooooo
|
151 |
+
oooooooooooooxoooooooooooooooooooooooooo
|
152 |
+
oooooooooooooooooooooooooxoooooooooooooo
|
153 |
+
ooooooooooooooooooooooooooooooooooooooox
|
154 |
+
xxxxxxxxxxxxxooooooooooooooooooooooooooo
|
155 |
+
oooooooooxxxxxxxxxxxxxoooooooooooooooooo
|
156 |
+
ooooooooooooooooooxxxxxxxxxxxxxooooooooo
|
157 |
+
oooooooooooooooooooooooooooxxxxxxxxxxxxx
|
158 |
+
xxxxxxxxxxxxxxxxxxxxxxxxxooooooooooooooo
|
159 |
+
oooooxxxxxxxxxxxxxxxxxxxxxxxxxoooooooooo
|
160 |
+
ooooooooooxxxxxxxxxxxxxxxxxxxxxxxxxooooo
|
161 |
+
oooooooooooooooxxxxxxxxxxxxxxxxxxxxxxxxx
|
162 |
+
```
|
163 |
+
|
164 |
+
## Specifications
|
165 |
+
|
166 |
+
```toml
|
167 |
+
# general configurations
|
168 |
+
[general]
|
169 |
+
resolution = [960, 544] # optional, [W, H], default is None. This is the default resolution for all datasets
|
170 |
+
caption_extension = ".txt" # optional, default is None. This is the default caption extension for all datasets
|
171 |
+
batch_size = 1 # optional, default is 1. This is the default batch size for all datasets
|
172 |
+
enable_bucket = true # optional, default is false. Enable bucketing for datasets
|
173 |
+
bucket_no_upscale = false # optional, default is false. Disable upscaling for bucketing. Ignored if enable_bucket is false
|
174 |
+
|
175 |
+
### Image Dataset
|
176 |
+
|
177 |
+
# sample image dataset with caption text files
|
178 |
+
[[datasets]]
|
179 |
+
image_directory = "/path/to/image_dir"
|
180 |
+
caption_extension = ".txt" # required for caption text files, if general caption extension is not set
|
181 |
+
resolution = [960, 544] # required if general resolution is not set
|
182 |
+
batch_size = 4 # optional, overwrite the default batch size
|
183 |
+
enable_bucket = false # optional, overwrite the default bucketing setting
|
184 |
+
bucket_no_upscale = true # optional, overwrite the default bucketing setting
|
185 |
+
cache_directory = "/path/to/cache_directory" # optional, default is None to use the same directory as the image directory. NOTE: caching is always enabled
|
186 |
+
|
187 |
+
# sample image dataset with metadata **jsonl** file
|
188 |
+
[[datasets]]
|
189 |
+
image_jsonl_file = "/path/to/metadata.jsonl" # includes pairs of image files and captions
|
190 |
+
resolution = [960, 544] # required if general resolution is not set
|
191 |
+
cache_directory = "/path/to/cache_directory" # required for metadata jsonl file
|
192 |
+
# caption_extension is not required for metadata jsonl file
|
193 |
+
# batch_size, enable_bucket, bucket_no_upscale are also available for metadata jsonl file
|
194 |
+
|
195 |
+
### Video Dataset
|
196 |
+
|
197 |
+
# sample video dataset with caption text files
|
198 |
+
[[datasets]]
|
199 |
+
video_directory = "/path/to/video_dir"
|
200 |
+
caption_extension = ".txt" # required for caption text files, if general caption extension is not set
|
201 |
+
resolution = [960, 544] # required if general resolution is not set
|
202 |
+
|
203 |
+
target_frames = [1, 25, 79] # required for video dataset. list of video lengths to extract frames. each element must be N*4+1 (N=0,1,2,...)
|
204 |
+
|
205 |
+
# NOTE: Please do not include 1 in target_frames if you are using the frame_extraction "chunk". It will make the all frames to be extracted.
|
206 |
+
|
207 |
+
frame_extraction = "head" # optional, "head" or "chunk", "slide", "uniform". Default is "head"
|
208 |
+
frame_stride = 1 # optional, default is 1, available for "slide" frame extraction
|
209 |
+
frame_sample = 4 # optional, default is 1 (same as "head"), available for "uniform" frame extraction
|
210 |
+
# batch_size, enable_bucket, bucket_no_upscale, cache_directory are also available for video dataset
|
211 |
+
|
212 |
+
# sample video dataset with metadata jsonl file
|
213 |
+
[[datasets]]
|
214 |
+
video_jsonl_file = "/path/to/metadata.jsonl" # includes pairs of video files and captions
|
215 |
+
|
216 |
+
target_frames = [1, 79]
|
217 |
+
|
218 |
+
cache_directory = "/path/to/cache_directory" # required for metadata jsonl file
|
219 |
+
# frame_extraction, frame_stride, frame_sample are also available for metadata jsonl file
|
220 |
+
```
|
221 |
+
|
222 |
+
<!--
|
223 |
+
# sample image dataset with lance
|
224 |
+
[[datasets]]
|
225 |
+
image_lance_dataset = "/path/to/lance_dataset"
|
226 |
+
resolution = [960, 544] # required if general resolution is not set
|
227 |
+
# batch_size, enable_bucket, bucket_no_upscale, cache_directory are also available for lance dataset
|
228 |
+
-->
|
229 |
+
|
230 |
+
The metadata with .json file will be supported in the near future.
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
<!--
|
235 |
+
|
236 |
+
```toml
|
237 |
+
# general configurations
|
238 |
+
[general]
|
239 |
+
resolution = [960, 544] # optional, [W, H], default is None. This is the default resolution for all datasets
|
240 |
+
caption_extension = ".txt" # optional, default is None. This is the default caption extension for all datasets
|
241 |
+
batch_size = 1 # optional, default is 1. This is the default batch size for all datasets
|
242 |
+
enable_bucket = true # optional, default is false. Enable bucketing for datasets
|
243 |
+
bucket_no_upscale = false # optional, default is false. Disable upscaling for bucketing. Ignored if enable_bucket is false
|
244 |
+
|
245 |
+
# sample image dataset with caption text files
|
246 |
+
[[datasets]]
|
247 |
+
image_directory = "/path/to/image_dir"
|
248 |
+
caption_extension = ".txt" # required for caption text files, if general caption extension is not set
|
249 |
+
resolution = [960, 544] # required if general resolution is not set
|
250 |
+
batch_size = 4 # optional, overwrite the default batch size
|
251 |
+
enable_bucket = false # optional, overwrite the default bucketing setting
|
252 |
+
bucket_no_upscale = true # optional, overwrite the default bucketing setting
|
253 |
+
cache_directory = "/path/to/cache_directory" # optional, default is None to use the same directory as the image directory. NOTE: caching is always enabled
|
254 |
+
|
255 |
+
# sample image dataset with metadata **jsonl** file
|
256 |
+
[[datasets]]
|
257 |
+
image_jsonl_file = "/path/to/metadata.jsonl" # includes pairs of image files and captions
|
258 |
+
resolution = [960, 544] # required if general resolution is not set
|
259 |
+
cache_directory = "/path/to/cache_directory" # required for metadata jsonl file
|
260 |
+
# caption_extension is not required for metadata jsonl file
|
261 |
+
# batch_size, enable_bucket, bucket_no_upscale are also available for metadata jsonl file
|
262 |
+
|
263 |
+
# sample video dataset with caption text files
|
264 |
+
[[datasets]]
|
265 |
+
video_directory = "/path/to/video_dir"
|
266 |
+
caption_extension = ".txt" # required for caption text files, if general caption extension is not set
|
267 |
+
resolution = [960, 544] # required if general resolution is not set
|
268 |
+
target_frames = [1, 25, 79] # required for video dataset. list of video lengths to extract frames. each element must be N*4+1 (N=0,1,2,...)
|
269 |
+
frame_extraction = "head" # optional, "head" or "chunk", "slide", "uniform". Default is "head"
|
270 |
+
frame_stride = 1 # optional, default is 1, available for "slide" frame extraction
|
271 |
+
frame_sample = 4 # optional, default is 1 (same as "head"), available for "uniform" frame extraction
|
272 |
+
# batch_size, enable_bucket, bucket_no_upscale, cache_directory are also available for video dataset
|
273 |
+
|
274 |
+
# sample video dataset with metadata jsonl file
|
275 |
+
[[datasets]]
|
276 |
+
video_jsonl_file = "/path/to/metadata.jsonl" # includes pairs of video files and captions
|
277 |
+
target_frames = [1, 79]
|
278 |
+
cache_directory = "/path/to/cache_directory" # required for metadata jsonl file
|
279 |
+
# frame_extraction, frame_stride, frame_sample are also available for metadata jsonl file
|
280 |
+
```
|
281 |
+
|
282 |
+
# sample image dataset with lance
|
283 |
+
[[datasets]]
|
284 |
+
image_lance_dataset = "/path/to/lance_dataset"
|
285 |
+
resolution = [960, 544] # required if general resolution is not set
|
286 |
+
# batch_size, enable_bucket, bucket_no_upscale, cache_directory are also available for lance dataset
|
287 |
+
|
288 |
+
The metadata with .json file will be supported in the near future.
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
-->
|
dataset/image_video_dataset.py
ADDED
@@ -0,0 +1,1255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from concurrent.futures import ThreadPoolExecutor
|
2 |
+
import glob
|
3 |
+
import json
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
import time
|
8 |
+
from typing import Optional, Sequence, Tuple, Union
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from safetensors.torch import save_file, load_file
|
13 |
+
from safetensors import safe_open
|
14 |
+
from PIL import Image
|
15 |
+
import cv2
|
16 |
+
import av
|
17 |
+
|
18 |
+
from utils import safetensors_utils
|
19 |
+
from utils.model_utils import dtype_to_str
|
20 |
+
|
21 |
+
import logging
|
22 |
+
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
logging.basicConfig(level=logging.INFO)
|
25 |
+
|
26 |
+
|
27 |
+
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp", ".bmp", ".PNG", ".JPG", ".JPEG", ".WEBP", ".BMP"]
|
28 |
+
|
29 |
+
try:
|
30 |
+
import pillow_avif
|
31 |
+
|
32 |
+
IMAGE_EXTENSIONS.extend([".avif", ".AVIF"])
|
33 |
+
except:
|
34 |
+
pass
|
35 |
+
|
36 |
+
# JPEG-XL on Linux
|
37 |
+
try:
|
38 |
+
from jxlpy import JXLImagePlugin
|
39 |
+
|
40 |
+
IMAGE_EXTENSIONS.extend([".jxl", ".JXL"])
|
41 |
+
except:
|
42 |
+
pass
|
43 |
+
|
44 |
+
# JPEG-XL on Windows
|
45 |
+
try:
|
46 |
+
import pillow_jxl
|
47 |
+
|
48 |
+
IMAGE_EXTENSIONS.extend([".jxl", ".JXL"])
|
49 |
+
except:
|
50 |
+
pass
|
51 |
+
|
52 |
+
VIDEO_EXTENSIONS = [".mp4", ".avi", ".mov", ".webm", ".MP4", ".AVI", ".MOV", ".WEBM"] # some of them are not tested
|
53 |
+
|
54 |
+
ARCHITECTURE_HUNYUAN_VIDEO = "hv"
|
55 |
+
|
56 |
+
|
57 |
+
def glob_images(directory, base="*"):
|
58 |
+
img_paths = []
|
59 |
+
for ext in IMAGE_EXTENSIONS:
|
60 |
+
if base == "*":
|
61 |
+
img_paths.extend(glob.glob(os.path.join(glob.escape(directory), base + ext)))
|
62 |
+
else:
|
63 |
+
img_paths.extend(glob.glob(glob.escape(os.path.join(directory, base + ext))))
|
64 |
+
img_paths = list(set(img_paths)) # remove duplicates
|
65 |
+
img_paths.sort()
|
66 |
+
return img_paths
|
67 |
+
|
68 |
+
|
69 |
+
def glob_videos(directory, base="*"):
|
70 |
+
video_paths = []
|
71 |
+
for ext in VIDEO_EXTENSIONS:
|
72 |
+
if base == "*":
|
73 |
+
video_paths.extend(glob.glob(os.path.join(glob.escape(directory), base + ext)))
|
74 |
+
else:
|
75 |
+
video_paths.extend(glob.glob(glob.escape(os.path.join(directory, base + ext))))
|
76 |
+
video_paths = list(set(video_paths)) # remove duplicates
|
77 |
+
video_paths.sort()
|
78 |
+
return video_paths
|
79 |
+
|
80 |
+
|
81 |
+
def divisible_by(num: int, divisor: int) -> int:
|
82 |
+
return num - num % divisor
|
83 |
+
|
84 |
+
|
85 |
+
def resize_image_to_bucket(image: Union[Image.Image, np.ndarray], bucket_reso: tuple[int, int]) -> np.ndarray:
|
86 |
+
"""
|
87 |
+
Resize the image to the bucket resolution.
|
88 |
+
"""
|
89 |
+
is_pil_image = isinstance(image, Image.Image)
|
90 |
+
if is_pil_image:
|
91 |
+
image_width, image_height = image.size
|
92 |
+
else:
|
93 |
+
image_height, image_width = image.shape[:2]
|
94 |
+
|
95 |
+
if bucket_reso == (image_width, image_height):
|
96 |
+
return np.array(image) if is_pil_image else image
|
97 |
+
|
98 |
+
bucket_width, bucket_height = bucket_reso
|
99 |
+
if bucket_width == image_width or bucket_height == image_height:
|
100 |
+
image = np.array(image) if is_pil_image else image
|
101 |
+
else:
|
102 |
+
# resize the image to the bucket resolution to match the short side
|
103 |
+
scale_width = bucket_width / image_width
|
104 |
+
scale_height = bucket_height / image_height
|
105 |
+
scale = max(scale_width, scale_height)
|
106 |
+
image_width = int(image_width * scale + 0.5)
|
107 |
+
image_height = int(image_height * scale + 0.5)
|
108 |
+
|
109 |
+
if scale > 1:
|
110 |
+
image = Image.fromarray(image) if not is_pil_image else image
|
111 |
+
image = image.resize((image_width, image_height), Image.LANCZOS)
|
112 |
+
image = np.array(image)
|
113 |
+
else:
|
114 |
+
image = np.array(image) if is_pil_image else image
|
115 |
+
image = cv2.resize(image, (image_width, image_height), interpolation=cv2.INTER_AREA)
|
116 |
+
|
117 |
+
# crop the image to the bucket resolution
|
118 |
+
crop_left = (image_width - bucket_width) // 2
|
119 |
+
crop_top = (image_height - bucket_height) // 2
|
120 |
+
image = image[crop_top : crop_top + bucket_height, crop_left : crop_left + bucket_width]
|
121 |
+
return image
|
122 |
+
|
123 |
+
|
124 |
+
class ItemInfo:
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
item_key: str,
|
128 |
+
caption: str,
|
129 |
+
original_size: tuple[int, int],
|
130 |
+
bucket_size: Optional[Union[tuple[int, int], tuple[int, int, int]]] = None,
|
131 |
+
frame_count: Optional[int] = None,
|
132 |
+
content: Optional[np.ndarray] = None,
|
133 |
+
latent_cache_path: Optional[str] = None,
|
134 |
+
) -> None:
|
135 |
+
self.item_key = item_key
|
136 |
+
self.caption = caption
|
137 |
+
self.original_size = original_size
|
138 |
+
self.bucket_size = bucket_size
|
139 |
+
self.frame_count = frame_count
|
140 |
+
self.content = content
|
141 |
+
self.latent_cache_path = latent_cache_path
|
142 |
+
self.text_encoder_output_cache_path: Optional[str] = None
|
143 |
+
|
144 |
+
def __str__(self) -> str:
|
145 |
+
return (
|
146 |
+
f"ItemInfo(item_key={self.item_key}, caption={self.caption}, "
|
147 |
+
+ f"original_size={self.original_size}, bucket_size={self.bucket_size}, "
|
148 |
+
+ f"frame_count={self.frame_count}, latent_cache_path={self.latent_cache_path})"
|
149 |
+
)
|
150 |
+
|
151 |
+
|
152 |
+
def save_latent_cache(item_info: ItemInfo, latent: torch.Tensor):
|
153 |
+
assert latent.dim() == 4, "latent should be 4D tensor (frame, channel, height, width)"
|
154 |
+
metadata = {
|
155 |
+
"architecture": "hunyuan_video",
|
156 |
+
"width": f"{item_info.original_size[0]}",
|
157 |
+
"height": f"{item_info.original_size[1]}",
|
158 |
+
"format_version": "1.0.0",
|
159 |
+
}
|
160 |
+
if item_info.frame_count is not None:
|
161 |
+
metadata["frame_count"] = f"{item_info.frame_count}"
|
162 |
+
|
163 |
+
_, F, H, W = latent.shape
|
164 |
+
dtype_str = dtype_to_str(latent.dtype)
|
165 |
+
sd = {f"latents_{F}x{H}x{W}_{dtype_str}": latent.detach().cpu()}
|
166 |
+
|
167 |
+
latent_dir = os.path.dirname(item_info.latent_cache_path)
|
168 |
+
os.makedirs(latent_dir, exist_ok=True)
|
169 |
+
|
170 |
+
save_file(sd, item_info.latent_cache_path, metadata=metadata)
|
171 |
+
|
172 |
+
|
173 |
+
def save_text_encoder_output_cache(item_info: ItemInfo, embed: torch.Tensor, mask: Optional[torch.Tensor], is_llm: bool):
|
174 |
+
assert (
|
175 |
+
embed.dim() == 1 or embed.dim() == 2
|
176 |
+
), f"embed should be 2D tensor (feature, hidden_size) or (hidden_size,), got {embed.shape}"
|
177 |
+
assert mask is None or mask.dim() == 1, f"mask should be 1D tensor (feature), got {mask.shape}"
|
178 |
+
metadata = {
|
179 |
+
"architecture": "hunyuan_video",
|
180 |
+
"caption1": item_info.caption,
|
181 |
+
"format_version": "1.0.0",
|
182 |
+
}
|
183 |
+
|
184 |
+
sd = {}
|
185 |
+
if os.path.exists(item_info.text_encoder_output_cache_path):
|
186 |
+
# load existing cache and update metadata
|
187 |
+
with safetensors_utils.MemoryEfficientSafeOpen(item_info.text_encoder_output_cache_path) as f:
|
188 |
+
existing_metadata = f.metadata()
|
189 |
+
for key in f.keys():
|
190 |
+
sd[key] = f.get_tensor(key)
|
191 |
+
|
192 |
+
assert existing_metadata["architecture"] == metadata["architecture"], "architecture mismatch"
|
193 |
+
if existing_metadata["caption1"] != metadata["caption1"]:
|
194 |
+
logger.warning(f"caption mismatch: existing={existing_metadata['caption1']}, new={metadata['caption1']}, overwrite")
|
195 |
+
# TODO verify format_version
|
196 |
+
|
197 |
+
existing_metadata.pop("caption1", None)
|
198 |
+
existing_metadata.pop("format_version", None)
|
199 |
+
metadata.update(existing_metadata) # copy existing metadata
|
200 |
+
else:
|
201 |
+
text_encoder_output_dir = os.path.dirname(item_info.text_encoder_output_cache_path)
|
202 |
+
os.makedirs(text_encoder_output_dir, exist_ok=True)
|
203 |
+
|
204 |
+
dtype_str = dtype_to_str(embed.dtype)
|
205 |
+
text_encoder_type = "llm" if is_llm else "clipL"
|
206 |
+
sd[f"{text_encoder_type}_{dtype_str}"] = embed.detach().cpu()
|
207 |
+
if mask is not None:
|
208 |
+
sd[f"{text_encoder_type}_mask"] = mask.detach().cpu()
|
209 |
+
|
210 |
+
safetensors_utils.mem_eff_save_file(sd, item_info.text_encoder_output_cache_path, metadata=metadata)
|
211 |
+
|
212 |
+
|
213 |
+
class BucketSelector:
|
214 |
+
RESOLUTION_STEPS_HUNYUAN = 16
|
215 |
+
|
216 |
+
def __init__(self, resolution: Tuple[int, int], enable_bucket: bool = True, no_upscale: bool = False):
|
217 |
+
self.resolution = resolution
|
218 |
+
self.bucket_area = resolution[0] * resolution[1]
|
219 |
+
self.reso_steps = BucketSelector.RESOLUTION_STEPS_HUNYUAN
|
220 |
+
|
221 |
+
if not enable_bucket:
|
222 |
+
# only define one bucket
|
223 |
+
self.bucket_resolutions = [resolution]
|
224 |
+
self.no_upscale = False
|
225 |
+
else:
|
226 |
+
# prepare bucket resolution
|
227 |
+
self.no_upscale = no_upscale
|
228 |
+
sqrt_size = int(math.sqrt(self.bucket_area))
|
229 |
+
min_size = divisible_by(sqrt_size // 2, self.reso_steps)
|
230 |
+
self.bucket_resolutions = []
|
231 |
+
for w in range(min_size, sqrt_size + self.reso_steps, self.reso_steps):
|
232 |
+
h = divisible_by(self.bucket_area // w, self.reso_steps)
|
233 |
+
self.bucket_resolutions.append((w, h))
|
234 |
+
self.bucket_resolutions.append((h, w))
|
235 |
+
|
236 |
+
self.bucket_resolutions = list(set(self.bucket_resolutions))
|
237 |
+
self.bucket_resolutions.sort()
|
238 |
+
|
239 |
+
# calculate aspect ratio to find the nearest resolution
|
240 |
+
self.aspect_ratios = np.array([w / h for w, h in self.bucket_resolutions])
|
241 |
+
|
242 |
+
def get_bucket_resolution(self, image_size: tuple[int, int]) -> tuple[int, int]:
|
243 |
+
"""
|
244 |
+
return the bucket resolution for the given image size, (width, height)
|
245 |
+
"""
|
246 |
+
area = image_size[0] * image_size[1]
|
247 |
+
if self.no_upscale and area <= self.bucket_area:
|
248 |
+
w, h = image_size
|
249 |
+
w = divisible_by(w, self.reso_steps)
|
250 |
+
h = divisible_by(h, self.reso_steps)
|
251 |
+
return w, h
|
252 |
+
|
253 |
+
aspect_ratio = image_size[0] / image_size[1]
|
254 |
+
ar_errors = self.aspect_ratios - aspect_ratio
|
255 |
+
bucket_id = np.abs(ar_errors).argmin()
|
256 |
+
return self.bucket_resolutions[bucket_id]
|
257 |
+
|
258 |
+
|
259 |
+
def load_video(
|
260 |
+
video_path: str,
|
261 |
+
start_frame: Optional[int] = None,
|
262 |
+
end_frame: Optional[int] = None,
|
263 |
+
bucket_selector: Optional[BucketSelector] = None,
|
264 |
+
) -> list[np.ndarray]:
|
265 |
+
container = av.open(video_path)
|
266 |
+
video = []
|
267 |
+
bucket_reso = None
|
268 |
+
for i, frame in enumerate(container.decode(video=0)):
|
269 |
+
if start_frame is not None and i < start_frame:
|
270 |
+
continue
|
271 |
+
if end_frame is not None and i >= end_frame:
|
272 |
+
break
|
273 |
+
frame = frame.to_image()
|
274 |
+
|
275 |
+
if bucket_selector is not None and bucket_reso is None:
|
276 |
+
bucket_reso = bucket_selector.get_bucket_resolution(frame.size)
|
277 |
+
|
278 |
+
if bucket_reso is not None:
|
279 |
+
frame = resize_image_to_bucket(frame, bucket_reso)
|
280 |
+
else:
|
281 |
+
frame = np.array(frame)
|
282 |
+
|
283 |
+
video.append(frame)
|
284 |
+
container.close()
|
285 |
+
return video
|
286 |
+
|
287 |
+
|
288 |
+
class BucketBatchManager:
|
289 |
+
|
290 |
+
def __init__(self, bucketed_item_info: dict[tuple[int, int], list[ItemInfo]], batch_size: int):
|
291 |
+
self.batch_size = batch_size
|
292 |
+
self.buckets = bucketed_item_info
|
293 |
+
self.bucket_resos = list(self.buckets.keys())
|
294 |
+
self.bucket_resos.sort()
|
295 |
+
|
296 |
+
self.bucket_batch_indices = []
|
297 |
+
for bucket_reso in self.bucket_resos:
|
298 |
+
bucket = self.buckets[bucket_reso]
|
299 |
+
num_batches = math.ceil(len(bucket) / self.batch_size)
|
300 |
+
for i in range(num_batches):
|
301 |
+
self.bucket_batch_indices.append((bucket_reso, i))
|
302 |
+
|
303 |
+
self.shuffle()
|
304 |
+
|
305 |
+
def show_bucket_info(self):
|
306 |
+
for bucket_reso in self.bucket_resos:
|
307 |
+
bucket = self.buckets[bucket_reso]
|
308 |
+
logger.info(f"bucket: {bucket_reso}, count: {len(bucket)}")
|
309 |
+
|
310 |
+
logger.info(f"total batches: {len(self)}")
|
311 |
+
|
312 |
+
def shuffle(self):
|
313 |
+
for bucket in self.buckets.values():
|
314 |
+
random.shuffle(bucket)
|
315 |
+
random.shuffle(self.bucket_batch_indices)
|
316 |
+
|
317 |
+
def __len__(self):
|
318 |
+
return len(self.bucket_batch_indices)
|
319 |
+
|
320 |
+
def __getitem__(self, idx):
|
321 |
+
bucket_reso, batch_idx = self.bucket_batch_indices[idx]
|
322 |
+
bucket = self.buckets[bucket_reso]
|
323 |
+
start = batch_idx * self.batch_size
|
324 |
+
end = min(start + self.batch_size, len(bucket))
|
325 |
+
|
326 |
+
latents = []
|
327 |
+
llm_embeds = []
|
328 |
+
llm_masks = []
|
329 |
+
clip_l_embeds = []
|
330 |
+
for item_info in bucket[start:end]:
|
331 |
+
sd = load_file(item_info.latent_cache_path)
|
332 |
+
latent = None
|
333 |
+
for key in sd.keys():
|
334 |
+
if key.startswith("latents_"):
|
335 |
+
latent = sd[key]
|
336 |
+
break
|
337 |
+
latents.append(latent)
|
338 |
+
|
339 |
+
sd = load_file(item_info.text_encoder_output_cache_path)
|
340 |
+
llm_embed = llm_mask = clip_l_embed = None
|
341 |
+
for key in sd.keys():
|
342 |
+
if key.startswith("llm_mask"):
|
343 |
+
llm_mask = sd[key]
|
344 |
+
elif key.startswith("llm_"):
|
345 |
+
llm_embed = sd[key]
|
346 |
+
elif key.startswith("clipL_mask"):
|
347 |
+
pass
|
348 |
+
elif key.startswith("clipL_"):
|
349 |
+
clip_l_embed = sd[key]
|
350 |
+
llm_embeds.append(llm_embed)
|
351 |
+
llm_masks.append(llm_mask)
|
352 |
+
clip_l_embeds.append(clip_l_embed)
|
353 |
+
|
354 |
+
latents = torch.stack(latents)
|
355 |
+
llm_embeds = torch.stack(llm_embeds)
|
356 |
+
llm_masks = torch.stack(llm_masks)
|
357 |
+
clip_l_embeds = torch.stack(clip_l_embeds)
|
358 |
+
|
359 |
+
return latents, llm_embeds, llm_masks, clip_l_embeds
|
360 |
+
|
361 |
+
|
362 |
+
class ContentDatasource:
|
363 |
+
def __init__(self):
|
364 |
+
self.caption_only = False
|
365 |
+
|
366 |
+
def set_caption_only(self, caption_only: bool):
|
367 |
+
self.caption_only = caption_only
|
368 |
+
|
369 |
+
def is_indexable(self):
|
370 |
+
return False
|
371 |
+
|
372 |
+
def get_caption(self, idx: int) -> tuple[str, str]:
|
373 |
+
"""
|
374 |
+
Returns caption. May not be called if is_indexable() returns False.
|
375 |
+
"""
|
376 |
+
raise NotImplementedError
|
377 |
+
|
378 |
+
def __len__(self):
|
379 |
+
raise NotImplementedError
|
380 |
+
|
381 |
+
def __iter__(self):
|
382 |
+
raise NotImplementedError
|
383 |
+
|
384 |
+
def __next__(self):
|
385 |
+
raise NotImplementedError
|
386 |
+
|
387 |
+
|
388 |
+
class ImageDatasource(ContentDatasource):
|
389 |
+
def __init__(self):
|
390 |
+
super().__init__()
|
391 |
+
|
392 |
+
def get_image_data(self, idx: int) -> tuple[str, Image.Image, str]:
|
393 |
+
"""
|
394 |
+
Returns image data as a tuple of image path, image, and caption for the given index.
|
395 |
+
Key must be unique and valid as a file name.
|
396 |
+
May not be called if is_indexable() returns False.
|
397 |
+
"""
|
398 |
+
raise NotImplementedError
|
399 |
+
|
400 |
+
|
401 |
+
class ImageDirectoryDatasource(ImageDatasource):
|
402 |
+
def __init__(self, image_directory: str, caption_extension: Optional[str] = None):
|
403 |
+
super().__init__()
|
404 |
+
self.image_directory = image_directory
|
405 |
+
self.caption_extension = caption_extension
|
406 |
+
self.current_idx = 0
|
407 |
+
|
408 |
+
# glob images
|
409 |
+
logger.info(f"glob images in {self.image_directory}")
|
410 |
+
self.image_paths = glob_images(self.image_directory)
|
411 |
+
logger.info(f"found {len(self.image_paths)} images")
|
412 |
+
|
413 |
+
def is_indexable(self):
|
414 |
+
return True
|
415 |
+
|
416 |
+
def __len__(self):
|
417 |
+
return len(self.image_paths)
|
418 |
+
|
419 |
+
def get_image_data(self, idx: int) -> tuple[str, Image.Image, str]:
|
420 |
+
image_path = self.image_paths[idx]
|
421 |
+
image = Image.open(image_path).convert("RGB")
|
422 |
+
|
423 |
+
_, caption = self.get_caption(idx)
|
424 |
+
|
425 |
+
return image_path, image, caption
|
426 |
+
|
427 |
+
def get_caption(self, idx: int) -> tuple[str, str]:
|
428 |
+
image_path = self.image_paths[idx]
|
429 |
+
caption_path = os.path.splitext(image_path)[0] + self.caption_extension if self.caption_extension else ""
|
430 |
+
with open(caption_path, "r", encoding="utf-8") as f:
|
431 |
+
caption = f.read().strip()
|
432 |
+
return image_path, caption
|
433 |
+
|
434 |
+
def __iter__(self):
|
435 |
+
self.current_idx = 0
|
436 |
+
return self
|
437 |
+
|
438 |
+
def __next__(self) -> callable:
|
439 |
+
"""
|
440 |
+
Returns a fetcher function that returns image data.
|
441 |
+
"""
|
442 |
+
if self.current_idx >= len(self.image_paths):
|
443 |
+
raise StopIteration
|
444 |
+
|
445 |
+
if self.caption_only:
|
446 |
+
|
447 |
+
def create_caption_fetcher(index):
|
448 |
+
return lambda: self.get_caption(index)
|
449 |
+
|
450 |
+
fetcher = create_caption_fetcher(self.current_idx)
|
451 |
+
else:
|
452 |
+
|
453 |
+
def create_image_fetcher(index):
|
454 |
+
return lambda: self.get_image_data(index)
|
455 |
+
|
456 |
+
fetcher = create_image_fetcher(self.current_idx)
|
457 |
+
|
458 |
+
self.current_idx += 1
|
459 |
+
return fetcher
|
460 |
+
|
461 |
+
|
462 |
+
class ImageJsonlDatasource(ImageDatasource):
|
463 |
+
def __init__(self, image_jsonl_file: str):
|
464 |
+
super().__init__()
|
465 |
+
self.image_jsonl_file = image_jsonl_file
|
466 |
+
self.current_idx = 0
|
467 |
+
|
468 |
+
# load jsonl
|
469 |
+
logger.info(f"load image jsonl from {self.image_jsonl_file}")
|
470 |
+
self.data = []
|
471 |
+
with open(self.image_jsonl_file, "r", encoding="utf-8") as f:
|
472 |
+
for line in f:
|
473 |
+
data = json.loads(line)
|
474 |
+
self.data.append(data)
|
475 |
+
logger.info(f"loaded {len(self.data)} images")
|
476 |
+
|
477 |
+
def is_indexable(self):
|
478 |
+
return True
|
479 |
+
|
480 |
+
def __len__(self):
|
481 |
+
return len(self.data)
|
482 |
+
|
483 |
+
def get_image_data(self, idx: int) -> tuple[str, Image.Image, str]:
|
484 |
+
data = self.data[idx]
|
485 |
+
image_path = data["image_path"]
|
486 |
+
image = Image.open(image_path).convert("RGB")
|
487 |
+
|
488 |
+
caption = data["caption"]
|
489 |
+
|
490 |
+
return image_path, image, caption
|
491 |
+
|
492 |
+
def get_caption(self, idx: int) -> tuple[str, str]:
|
493 |
+
data = self.data[idx]
|
494 |
+
image_path = data["image_path"]
|
495 |
+
caption = data["caption"]
|
496 |
+
return image_path, caption
|
497 |
+
|
498 |
+
def __iter__(self):
|
499 |
+
self.current_idx = 0
|
500 |
+
return self
|
501 |
+
|
502 |
+
def __next__(self) -> callable:
|
503 |
+
if self.current_idx >= len(self.data):
|
504 |
+
raise StopIteration
|
505 |
+
|
506 |
+
if self.caption_only:
|
507 |
+
|
508 |
+
def create_caption_fetcher(index):
|
509 |
+
return lambda: self.get_caption(index)
|
510 |
+
|
511 |
+
fetcher = create_caption_fetcher(self.current_idx)
|
512 |
+
|
513 |
+
else:
|
514 |
+
|
515 |
+
def create_fetcher(index):
|
516 |
+
return lambda: self.get_image_data(index)
|
517 |
+
|
518 |
+
fetcher = create_fetcher(self.current_idx)
|
519 |
+
|
520 |
+
self.current_idx += 1
|
521 |
+
return fetcher
|
522 |
+
|
523 |
+
|
524 |
+
class VideoDatasource(ContentDatasource):
|
525 |
+
def __init__(self):
|
526 |
+
super().__init__()
|
527 |
+
|
528 |
+
# None means all frames
|
529 |
+
self.start_frame = None
|
530 |
+
self.end_frame = None
|
531 |
+
|
532 |
+
self.bucket_selector = None
|
533 |
+
|
534 |
+
def __len__(self):
|
535 |
+
raise NotImplementedError
|
536 |
+
|
537 |
+
def get_video_data_from_path(
|
538 |
+
self,
|
539 |
+
video_path: str,
|
540 |
+
start_frame: Optional[int] = None,
|
541 |
+
end_frame: Optional[int] = None,
|
542 |
+
bucket_selector: Optional[BucketSelector] = None,
|
543 |
+
) -> tuple[str, list[Image.Image], str]:
|
544 |
+
# this method can resize the video if bucket_selector is given to reduce the memory usage
|
545 |
+
|
546 |
+
start_frame = start_frame if start_frame is not None else self.start_frame
|
547 |
+
end_frame = end_frame if end_frame is not None else self.end_frame
|
548 |
+
bucket_selector = bucket_selector if bucket_selector is not None else self.bucket_selector
|
549 |
+
|
550 |
+
video = load_video(video_path, start_frame, end_frame, bucket_selector)
|
551 |
+
return video
|
552 |
+
|
553 |
+
def set_start_and_end_frame(self, start_frame: Optional[int], end_frame: Optional[int]):
|
554 |
+
self.start_frame = start_frame
|
555 |
+
self.end_frame = end_frame
|
556 |
+
|
557 |
+
def set_bucket_selector(self, bucket_selector: BucketSelector):
|
558 |
+
self.bucket_selector = bucket_selector
|
559 |
+
|
560 |
+
def __iter__(self):
|
561 |
+
raise NotImplementedError
|
562 |
+
|
563 |
+
def __next__(self):
|
564 |
+
raise NotImplementedError
|
565 |
+
|
566 |
+
|
567 |
+
class VideoDirectoryDatasource(VideoDatasource):
|
568 |
+
def __init__(self, video_directory: str, caption_extension: Optional[str] = None):
|
569 |
+
super().__init__()
|
570 |
+
self.video_directory = video_directory
|
571 |
+
self.caption_extension = caption_extension
|
572 |
+
self.current_idx = 0
|
573 |
+
|
574 |
+
# glob images
|
575 |
+
logger.info(f"glob images in {self.video_directory}")
|
576 |
+
self.video_paths = glob_videos(self.video_directory)
|
577 |
+
logger.info(f"found {len(self.video_paths)} videos")
|
578 |
+
|
579 |
+
def is_indexable(self):
|
580 |
+
return True
|
581 |
+
|
582 |
+
def __len__(self):
|
583 |
+
return len(self.video_paths)
|
584 |
+
|
585 |
+
def get_video_data(
|
586 |
+
self,
|
587 |
+
idx: int,
|
588 |
+
start_frame: Optional[int] = None,
|
589 |
+
end_frame: Optional[int] = None,
|
590 |
+
bucket_selector: Optional[BucketSelector] = None,
|
591 |
+
) -> tuple[str, list[Image.Image], str]:
|
592 |
+
video_path = self.video_paths[idx]
|
593 |
+
video = self.get_video_data_from_path(video_path, start_frame, end_frame, bucket_selector)
|
594 |
+
|
595 |
+
_, caption = self.get_caption(idx)
|
596 |
+
|
597 |
+
return video_path, video, caption
|
598 |
+
|
599 |
+
def get_caption(self, idx: int) -> tuple[str, str]:
|
600 |
+
video_path = self.video_paths[idx]
|
601 |
+
caption_path = os.path.splitext(video_path)[0] + self.caption_extension if self.caption_extension else ""
|
602 |
+
with open(caption_path, "r", encoding="utf-8") as f:
|
603 |
+
caption = f.read().strip()
|
604 |
+
return video_path, caption
|
605 |
+
|
606 |
+
def __iter__(self):
|
607 |
+
self.current_idx = 0
|
608 |
+
return self
|
609 |
+
|
610 |
+
def __next__(self):
|
611 |
+
if self.current_idx >= len(self.video_paths):
|
612 |
+
raise StopIteration
|
613 |
+
|
614 |
+
if self.caption_only:
|
615 |
+
|
616 |
+
def create_caption_fetcher(index):
|
617 |
+
return lambda: self.get_caption(index)
|
618 |
+
|
619 |
+
fetcher = create_caption_fetcher(self.current_idx)
|
620 |
+
|
621 |
+
else:
|
622 |
+
|
623 |
+
def create_fetcher(index):
|
624 |
+
return lambda: self.get_video_data(index)
|
625 |
+
|
626 |
+
fetcher = create_fetcher(self.current_idx)
|
627 |
+
|
628 |
+
self.current_idx += 1
|
629 |
+
return fetcher
|
630 |
+
|
631 |
+
|
632 |
+
class VideoJsonlDatasource(VideoDatasource):
|
633 |
+
def __init__(self, video_jsonl_file: str):
|
634 |
+
super().__init__()
|
635 |
+
self.video_jsonl_file = video_jsonl_file
|
636 |
+
self.current_idx = 0
|
637 |
+
|
638 |
+
# load jsonl
|
639 |
+
logger.info(f"load video jsonl from {self.video_jsonl_file}")
|
640 |
+
self.data = []
|
641 |
+
with open(self.video_jsonl_file, "r", encoding="utf-8") as f:
|
642 |
+
for line in f:
|
643 |
+
data = json.loads(line)
|
644 |
+
self.data.append(data)
|
645 |
+
logger.info(f"loaded {len(self.data)} videos")
|
646 |
+
|
647 |
+
def is_indexable(self):
|
648 |
+
return True
|
649 |
+
|
650 |
+
def __len__(self):
|
651 |
+
return len(self.data)
|
652 |
+
|
653 |
+
def get_video_data(
|
654 |
+
self,
|
655 |
+
idx: int,
|
656 |
+
start_frame: Optional[int] = None,
|
657 |
+
end_frame: Optional[int] = None,
|
658 |
+
bucket_selector: Optional[BucketSelector] = None,
|
659 |
+
) -> tuple[str, list[Image.Image], str]:
|
660 |
+
data = self.data[idx]
|
661 |
+
video_path = data["video_path"]
|
662 |
+
video = self.get_video_data_from_path(video_path, start_frame, end_frame, bucket_selector)
|
663 |
+
|
664 |
+
caption = data["caption"]
|
665 |
+
|
666 |
+
return video_path, video, caption
|
667 |
+
|
668 |
+
def get_caption(self, idx: int) -> tuple[str, str]:
|
669 |
+
data = self.data[idx]
|
670 |
+
video_path = data["video_path"]
|
671 |
+
caption = data["caption"]
|
672 |
+
return video_path, caption
|
673 |
+
|
674 |
+
def __iter__(self):
|
675 |
+
self.current_idx = 0
|
676 |
+
return self
|
677 |
+
|
678 |
+
def __next__(self):
|
679 |
+
if self.current_idx >= len(self.data):
|
680 |
+
raise StopIteration
|
681 |
+
|
682 |
+
if self.caption_only:
|
683 |
+
|
684 |
+
def create_caption_fetcher(index):
|
685 |
+
return lambda: self.get_caption(index)
|
686 |
+
|
687 |
+
fetcher = create_caption_fetcher(self.current_idx)
|
688 |
+
|
689 |
+
else:
|
690 |
+
|
691 |
+
def create_fetcher(index):
|
692 |
+
return lambda: self.get_video_data(index)
|
693 |
+
|
694 |
+
fetcher = create_fetcher(self.current_idx)
|
695 |
+
|
696 |
+
self.current_idx += 1
|
697 |
+
return fetcher
|
698 |
+
|
699 |
+
|
700 |
+
class BaseDataset(torch.utils.data.Dataset):
|
701 |
+
def __init__(
|
702 |
+
self,
|
703 |
+
resolution: Tuple[int, int] = (960, 544),
|
704 |
+
caption_extension: Optional[str] = None,
|
705 |
+
batch_size: int = 1,
|
706 |
+
enable_bucket: bool = False,
|
707 |
+
bucket_no_upscale: bool = False,
|
708 |
+
cache_directory: Optional[str] = None,
|
709 |
+
debug_dataset: bool = False,
|
710 |
+
):
|
711 |
+
self.resolution = resolution
|
712 |
+
self.caption_extension = caption_extension
|
713 |
+
self.batch_size = batch_size
|
714 |
+
self.enable_bucket = enable_bucket
|
715 |
+
self.bucket_no_upscale = bucket_no_upscale
|
716 |
+
self.cache_directory = cache_directory
|
717 |
+
self.debug_dataset = debug_dataset
|
718 |
+
self.seed = None
|
719 |
+
self.current_epoch = 0
|
720 |
+
|
721 |
+
if not self.enable_bucket:
|
722 |
+
self.bucket_no_upscale = False
|
723 |
+
|
724 |
+
def get_metadata(self) -> dict:
|
725 |
+
metadata = {
|
726 |
+
"resolution": self.resolution,
|
727 |
+
"caption_extension": self.caption_extension,
|
728 |
+
"batch_size_per_device": self.batch_size,
|
729 |
+
"enable_bucket": bool(self.enable_bucket),
|
730 |
+
"bucket_no_upscale": bool(self.bucket_no_upscale),
|
731 |
+
}
|
732 |
+
return metadata
|
733 |
+
|
734 |
+
def get_latent_cache_path(self, item_info: ItemInfo) -> str:
|
735 |
+
w, h = item_info.original_size
|
736 |
+
basename = os.path.splitext(os.path.basename(item_info.item_key))[0]
|
737 |
+
assert self.cache_directory is not None, "cache_directory is required / cache_directoryは必須です"
|
738 |
+
return os.path.join(self.cache_directory, f"{basename}_{w:04d}x{h:04d}_{ARCHITECTURE_HUNYUAN_VIDEO}.safetensors")
|
739 |
+
|
740 |
+
def get_text_encoder_output_cache_path(self, item_info: ItemInfo) -> str:
|
741 |
+
basename = os.path.splitext(os.path.basename(item_info.item_key))[0]
|
742 |
+
assert self.cache_directory is not None, "cache_directory is required / cache_directoryは必須です"
|
743 |
+
return os.path.join(self.cache_directory, f"{basename}_{ARCHITECTURE_HUNYUAN_VIDEO}_te.safetensors")
|
744 |
+
|
745 |
+
def retrieve_latent_cache_batches(self, num_workers: int):
|
746 |
+
raise NotImplementedError
|
747 |
+
|
748 |
+
def retrieve_text_encoder_output_cache_batches(self, num_workers: int):
|
749 |
+
raise NotImplementedError
|
750 |
+
|
751 |
+
def prepare_for_training(self):
|
752 |
+
pass
|
753 |
+
|
754 |
+
def set_seed(self, seed: int):
|
755 |
+
self.seed = seed
|
756 |
+
|
757 |
+
def set_current_epoch(self, epoch):
|
758 |
+
if not self.current_epoch == epoch: # shuffle buckets when epoch is incremented
|
759 |
+
if epoch > self.current_epoch:
|
760 |
+
logger.info("epoch is incremented. current_epoch: {}, epoch: {}".format(self.current_epoch, epoch))
|
761 |
+
num_epochs = epoch - self.current_epoch
|
762 |
+
for _ in range(num_epochs):
|
763 |
+
self.current_epoch += 1
|
764 |
+
self.shuffle_buckets()
|
765 |
+
# self.current_epoch seem to be set to 0 again in the next epoch. it may be caused by skipped_dataloader?
|
766 |
+
else:
|
767 |
+
logger.warning("epoch is not incremented. current_epoch: {}, epoch: {}".format(self.current_epoch, epoch))
|
768 |
+
self.current_epoch = epoch
|
769 |
+
|
770 |
+
def set_current_step(self, step):
|
771 |
+
self.current_step = step
|
772 |
+
|
773 |
+
def set_max_train_steps(self, max_train_steps):
|
774 |
+
self.max_train_steps = max_train_steps
|
775 |
+
|
776 |
+
def shuffle_buckets(self):
|
777 |
+
raise NotImplementedError
|
778 |
+
|
779 |
+
def __len__(self):
|
780 |
+
return NotImplementedError
|
781 |
+
|
782 |
+
def __getitem__(self, idx):
|
783 |
+
raise NotImplementedError
|
784 |
+
|
785 |
+
def _default_retrieve_text_encoder_output_cache_batches(self, datasource: ContentDatasource, batch_size: int, num_workers: int):
|
786 |
+
datasource.set_caption_only(True)
|
787 |
+
executor = ThreadPoolExecutor(max_workers=num_workers)
|
788 |
+
|
789 |
+
data: list[ItemInfo] = []
|
790 |
+
futures = []
|
791 |
+
|
792 |
+
def aggregate_future(consume_all: bool = False):
|
793 |
+
while len(futures) >= num_workers or (consume_all and len(futures) > 0):
|
794 |
+
completed_futures = [future for future in futures if future.done()]
|
795 |
+
if len(completed_futures) == 0:
|
796 |
+
if len(futures) >= num_workers or consume_all: # to avoid adding too many futures
|
797 |
+
time.sleep(0.1)
|
798 |
+
continue
|
799 |
+
else:
|
800 |
+
break # submit batch if possible
|
801 |
+
|
802 |
+
for future in completed_futures:
|
803 |
+
item_key, caption = future.result()
|
804 |
+
item_info = ItemInfo(item_key, caption, (0, 0), (0, 0))
|
805 |
+
item_info.text_encoder_output_cache_path = self.get_text_encoder_output_cache_path(item_info)
|
806 |
+
data.append(item_info)
|
807 |
+
|
808 |
+
futures.remove(future)
|
809 |
+
|
810 |
+
def submit_batch(flush: bool = False):
|
811 |
+
nonlocal data
|
812 |
+
if len(data) >= batch_size or (len(data) > 0 and flush):
|
813 |
+
batch = data[0:batch_size]
|
814 |
+
if len(data) > batch_size:
|
815 |
+
data = data[batch_size:]
|
816 |
+
else:
|
817 |
+
data = []
|
818 |
+
return batch
|
819 |
+
return None
|
820 |
+
|
821 |
+
for fetch_op in datasource:
|
822 |
+
future = executor.submit(fetch_op)
|
823 |
+
futures.append(future)
|
824 |
+
aggregate_future()
|
825 |
+
while True:
|
826 |
+
batch = submit_batch()
|
827 |
+
if batch is None:
|
828 |
+
break
|
829 |
+
yield batch
|
830 |
+
|
831 |
+
aggregate_future(consume_all=True)
|
832 |
+
while True:
|
833 |
+
batch = submit_batch(flush=True)
|
834 |
+
if batch is None:
|
835 |
+
break
|
836 |
+
yield batch
|
837 |
+
|
838 |
+
executor.shutdown()
|
839 |
+
|
840 |
+
|
841 |
+
class ImageDataset(BaseDataset):
|
842 |
+
def __init__(
|
843 |
+
self,
|
844 |
+
resolution: Tuple[int, int],
|
845 |
+
caption_extension: Optional[str],
|
846 |
+
batch_size: int,
|
847 |
+
enable_bucket: bool,
|
848 |
+
bucket_no_upscale: bool,
|
849 |
+
image_directory: Optional[str] = None,
|
850 |
+
image_jsonl_file: Optional[str] = None,
|
851 |
+
cache_directory: Optional[str] = None,
|
852 |
+
debug_dataset: bool = False,
|
853 |
+
):
|
854 |
+
super(ImageDataset, self).__init__(
|
855 |
+
resolution, caption_extension, batch_size, enable_bucket, bucket_no_upscale, cache_directory, debug_dataset
|
856 |
+
)
|
857 |
+
self.image_directory = image_directory
|
858 |
+
self.image_jsonl_file = image_jsonl_file
|
859 |
+
if image_directory is not None:
|
860 |
+
self.datasource = ImageDirectoryDatasource(image_directory, caption_extension)
|
861 |
+
elif image_jsonl_file is not None:
|
862 |
+
self.datasource = ImageJsonlDatasource(image_jsonl_file)
|
863 |
+
else:
|
864 |
+
raise ValueError("image_directory or image_jsonl_file must be specified")
|
865 |
+
|
866 |
+
if self.cache_directory is None:
|
867 |
+
self.cache_directory = self.image_directory
|
868 |
+
|
869 |
+
self.batch_manager = None
|
870 |
+
self.num_train_items = 0
|
871 |
+
|
872 |
+
def get_metadata(self):
|
873 |
+
metadata = super().get_metadata()
|
874 |
+
if self.image_directory is not None:
|
875 |
+
metadata["image_directory"] = os.path.basename(self.image_directory)
|
876 |
+
if self.image_jsonl_file is not None:
|
877 |
+
metadata["image_jsonl_file"] = os.path.basename(self.image_jsonl_file)
|
878 |
+
return metadata
|
879 |
+
|
880 |
+
def get_total_image_count(self):
|
881 |
+
return len(self.datasource) if self.datasource.is_indexable() else None
|
882 |
+
|
883 |
+
def retrieve_latent_cache_batches(self, num_workers: int):
|
884 |
+
buckset_selector = BucketSelector(self.resolution, self.enable_bucket, self.bucket_no_upscale)
|
885 |
+
executor = ThreadPoolExecutor(max_workers=num_workers)
|
886 |
+
|
887 |
+
batches: dict[tuple[int, int], list[ItemInfo]] = {} # (width, height) -> [ItemInfo]
|
888 |
+
futures = []
|
889 |
+
|
890 |
+
def aggregate_future(consume_all: bool = False):
|
891 |
+
while len(futures) >= num_workers or (consume_all and len(futures) > 0):
|
892 |
+
completed_futures = [future for future in futures if future.done()]
|
893 |
+
if len(completed_futures) == 0:
|
894 |
+
if len(futures) >= num_workers or consume_all: # to avoid adding too many futures
|
895 |
+
time.sleep(0.1)
|
896 |
+
continue
|
897 |
+
else:
|
898 |
+
break # submit batch if possible
|
899 |
+
|
900 |
+
for future in completed_futures:
|
901 |
+
original_size, item_key, image, caption = future.result()
|
902 |
+
bucket_height, bucket_width = image.shape[:2]
|
903 |
+
bucket_reso = (bucket_width, bucket_height)
|
904 |
+
|
905 |
+
item_info = ItemInfo(item_key, caption, original_size, bucket_reso, content=image)
|
906 |
+
item_info.latent_cache_path = self.get_latent_cache_path(item_info)
|
907 |
+
|
908 |
+
if bucket_reso not in batches:
|
909 |
+
batches[bucket_reso] = []
|
910 |
+
batches[bucket_reso].append(item_info)
|
911 |
+
|
912 |
+
futures.remove(future)
|
913 |
+
|
914 |
+
def submit_batch(flush: bool = False):
|
915 |
+
for key in batches:
|
916 |
+
if len(batches[key]) >= self.batch_size or flush:
|
917 |
+
batch = batches[key][0 : self.batch_size]
|
918 |
+
if len(batches[key]) > self.batch_size:
|
919 |
+
batches[key] = batches[key][self.batch_size :]
|
920 |
+
else:
|
921 |
+
del batches[key]
|
922 |
+
return key, batch
|
923 |
+
return None, None
|
924 |
+
|
925 |
+
for fetch_op in self.datasource:
|
926 |
+
|
927 |
+
def fetch_and_resize(op: callable) -> tuple[tuple[int, int], str, Image.Image, str]:
|
928 |
+
image_key, image, caption = op()
|
929 |
+
image: Image.Image
|
930 |
+
image_size = image.size
|
931 |
+
|
932 |
+
bucket_reso = buckset_selector.get_bucket_resolution(image_size)
|
933 |
+
image = resize_image_to_bucket(image, bucket_reso)
|
934 |
+
return image_size, image_key, image, caption
|
935 |
+
|
936 |
+
future = executor.submit(fetch_and_resize, fetch_op)
|
937 |
+
futures.append(future)
|
938 |
+
aggregate_future()
|
939 |
+
while True:
|
940 |
+
key, batch = submit_batch()
|
941 |
+
if key is None:
|
942 |
+
break
|
943 |
+
yield key, batch
|
944 |
+
|
945 |
+
aggregate_future(consume_all=True)
|
946 |
+
while True:
|
947 |
+
key, batch = submit_batch(flush=True)
|
948 |
+
if key is None:
|
949 |
+
break
|
950 |
+
yield key, batch
|
951 |
+
|
952 |
+
executor.shutdown()
|
953 |
+
|
954 |
+
def retrieve_text_encoder_output_cache_batches(self, num_workers: int):
|
955 |
+
return self._default_retrieve_text_encoder_output_cache_batches(self.datasource, self.batch_size, num_workers)
|
956 |
+
|
957 |
+
def prepare_for_training(self):
|
958 |
+
bucket_selector = BucketSelector(self.resolution, self.enable_bucket, self.bucket_no_upscale)
|
959 |
+
|
960 |
+
# glob cache files
|
961 |
+
latent_cache_files = glob.glob(os.path.join(self.cache_directory, f"*_{ARCHITECTURE_HUNYUAN_VIDEO}.safetensors"))
|
962 |
+
|
963 |
+
# assign cache files to item info
|
964 |
+
bucketed_item_info: dict[tuple[int, int], list[ItemInfo]] = {} # (width, height) -> [ItemInfo]
|
965 |
+
for cache_file in latent_cache_files:
|
966 |
+
tokens = os.path.basename(cache_file).split("_")
|
967 |
+
|
968 |
+
image_size = tokens[-2] # 0000x0000
|
969 |
+
image_width, image_height = map(int, image_size.split("x"))
|
970 |
+
image_size = (image_width, image_height)
|
971 |
+
|
972 |
+
item_key = "_".join(tokens[:-2])
|
973 |
+
text_encoder_output_cache_file = os.path.join(
|
974 |
+
self.cache_directory, f"{item_key}_{ARCHITECTURE_HUNYUAN_VIDEO}_te.safetensors"
|
975 |
+
)
|
976 |
+
if not os.path.exists(text_encoder_output_cache_file):
|
977 |
+
logger.warning(f"Text encoder output cache file not found: {text_encoder_output_cache_file}")
|
978 |
+
continue
|
979 |
+
|
980 |
+
bucket_reso = bucket_selector.get_bucket_resolution(image_size)
|
981 |
+
item_info = ItemInfo(item_key, "", image_size, bucket_reso, latent_cache_path=cache_file)
|
982 |
+
item_info.text_encoder_output_cache_path = text_encoder_output_cache_file
|
983 |
+
|
984 |
+
bucket = bucketed_item_info.get(bucket_reso, [])
|
985 |
+
bucket.append(item_info)
|
986 |
+
bucketed_item_info[bucket_reso] = bucket
|
987 |
+
|
988 |
+
# prepare batch manager
|
989 |
+
self.batch_manager = BucketBatchManager(bucketed_item_info, self.batch_size)
|
990 |
+
self.batch_manager.show_bucket_info()
|
991 |
+
|
992 |
+
self.num_train_items = sum([len(bucket) for bucket in bucketed_item_info.values()])
|
993 |
+
|
994 |
+
def shuffle_buckets(self):
|
995 |
+
# set random seed for this epoch
|
996 |
+
random.seed(self.seed + self.current_epoch)
|
997 |
+
self.batch_manager.shuffle()
|
998 |
+
|
999 |
+
def __len__(self):
|
1000 |
+
if self.batch_manager is None:
|
1001 |
+
return 100 # dummy value
|
1002 |
+
return len(self.batch_manager)
|
1003 |
+
|
1004 |
+
def __getitem__(self, idx):
|
1005 |
+
return self.batch_manager[idx]
|
1006 |
+
|
1007 |
+
|
1008 |
+
class VideoDataset(BaseDataset):
|
1009 |
+
def __init__(
|
1010 |
+
self,
|
1011 |
+
resolution: Tuple[int, int],
|
1012 |
+
caption_extension: Optional[str],
|
1013 |
+
batch_size: int,
|
1014 |
+
enable_bucket: bool,
|
1015 |
+
bucket_no_upscale: bool,
|
1016 |
+
frame_extraction: Optional[str] = "head",
|
1017 |
+
frame_stride: Optional[int] = 1,
|
1018 |
+
frame_sample: Optional[int] = 1,
|
1019 |
+
target_frames: Optional[list[int]] = None,
|
1020 |
+
video_directory: Optional[str] = None,
|
1021 |
+
video_jsonl_file: Optional[str] = None,
|
1022 |
+
cache_directory: Optional[str] = None,
|
1023 |
+
debug_dataset: bool = False,
|
1024 |
+
):
|
1025 |
+
super(VideoDataset, self).__init__(
|
1026 |
+
resolution, caption_extension, batch_size, enable_bucket, bucket_no_upscale, cache_directory, debug_dataset
|
1027 |
+
)
|
1028 |
+
self.video_directory = video_directory
|
1029 |
+
self.video_jsonl_file = video_jsonl_file
|
1030 |
+
self.target_frames = target_frames
|
1031 |
+
self.frame_extraction = frame_extraction
|
1032 |
+
self.frame_stride = frame_stride
|
1033 |
+
self.frame_sample = frame_sample
|
1034 |
+
|
1035 |
+
if video_directory is not None:
|
1036 |
+
self.datasource = VideoDirectoryDatasource(video_directory, caption_extension)
|
1037 |
+
elif video_jsonl_file is not None:
|
1038 |
+
self.datasource = VideoJsonlDatasource(video_jsonl_file)
|
1039 |
+
|
1040 |
+
if self.frame_extraction == "uniform" and self.frame_sample == 1:
|
1041 |
+
self.frame_extraction = "head"
|
1042 |
+
logger.warning("frame_sample is set to 1 for frame_extraction=uniform. frame_extraction is changed to head.")
|
1043 |
+
if self.frame_extraction == "head":
|
1044 |
+
# head extraction. we can limit the number of frames to be extracted
|
1045 |
+
self.datasource.set_start_and_end_frame(0, max(self.target_frames))
|
1046 |
+
|
1047 |
+
if self.cache_directory is None:
|
1048 |
+
self.cache_directory = self.video_directory
|
1049 |
+
|
1050 |
+
self.batch_manager = None
|
1051 |
+
self.num_train_items = 0
|
1052 |
+
|
1053 |
+
def get_metadata(self):
|
1054 |
+
metadata = super().get_metadata()
|
1055 |
+
if self.video_directory is not None:
|
1056 |
+
metadata["video_directory"] = os.path.basename(self.video_directory)
|
1057 |
+
if self.video_jsonl_file is not None:
|
1058 |
+
metadata["video_jsonl_file"] = os.path.basename(self.video_jsonl_file)
|
1059 |
+
metadata["frame_extraction"] = self.frame_extraction
|
1060 |
+
metadata["frame_stride"] = self.frame_stride
|
1061 |
+
metadata["frame_sample"] = self.frame_sample
|
1062 |
+
metadata["target_frames"] = self.target_frames
|
1063 |
+
return metadata
|
1064 |
+
|
1065 |
+
def retrieve_latent_cache_batches(self, num_workers: int):
|
1066 |
+
buckset_selector = BucketSelector(self.resolution)
|
1067 |
+
self.datasource.set_bucket_selector(buckset_selector)
|
1068 |
+
|
1069 |
+
executor = ThreadPoolExecutor(max_workers=num_workers)
|
1070 |
+
|
1071 |
+
# key: (width, height, frame_count), value: [ItemInfo]
|
1072 |
+
batches: dict[tuple[int, int, int], list[ItemInfo]] = {}
|
1073 |
+
futures = []
|
1074 |
+
|
1075 |
+
def aggregate_future(consume_all: bool = False):
|
1076 |
+
while len(futures) >= num_workers or (consume_all and len(futures) > 0):
|
1077 |
+
completed_futures = [future for future in futures if future.done()]
|
1078 |
+
if len(completed_futures) == 0:
|
1079 |
+
if len(futures) >= num_workers or consume_all: # to avoid adding too many futures
|
1080 |
+
time.sleep(0.1)
|
1081 |
+
continue
|
1082 |
+
else:
|
1083 |
+
break # submit batch if possible
|
1084 |
+
|
1085 |
+
for future in completed_futures:
|
1086 |
+
original_frame_size, video_key, video, caption = future.result()
|
1087 |
+
|
1088 |
+
frame_count = len(video)
|
1089 |
+
video = np.stack(video, axis=0)
|
1090 |
+
height, width = video.shape[1:3]
|
1091 |
+
bucket_reso = (width, height) # already resized
|
1092 |
+
|
1093 |
+
crop_pos_and_frames = []
|
1094 |
+
if self.frame_extraction == "head":
|
1095 |
+
for target_frame in self.target_frames:
|
1096 |
+
if frame_count >= target_frame:
|
1097 |
+
crop_pos_and_frames.append((0, target_frame))
|
1098 |
+
elif self.frame_extraction == "chunk":
|
1099 |
+
# split by target_frames
|
1100 |
+
for target_frame in self.target_frames:
|
1101 |
+
for i in range(0, frame_count, target_frame):
|
1102 |
+
if i + target_frame <= frame_count:
|
1103 |
+
crop_pos_and_frames.append((i, target_frame))
|
1104 |
+
elif self.frame_extraction == "slide":
|
1105 |
+
# slide window
|
1106 |
+
for target_frame in self.target_frames:
|
1107 |
+
if frame_count >= target_frame:
|
1108 |
+
for i in range(0, frame_count - target_frame + 1, self.frame_stride):
|
1109 |
+
crop_pos_and_frames.append((i, target_frame))
|
1110 |
+
elif self.frame_extraction == "uniform":
|
1111 |
+
# select N frames uniformly
|
1112 |
+
for target_frame in self.target_frames:
|
1113 |
+
if frame_count >= target_frame:
|
1114 |
+
frame_indices = np.linspace(0, frame_count - target_frame, self.frame_sample, dtype=int)
|
1115 |
+
for i in frame_indices:
|
1116 |
+
crop_pos_and_frames.append((i, target_frame))
|
1117 |
+
else:
|
1118 |
+
raise ValueError(f"frame_extraction {self.frame_extraction} is not supported")
|
1119 |
+
|
1120 |
+
for crop_pos, target_frame in crop_pos_and_frames:
|
1121 |
+
cropped_video = video[crop_pos : crop_pos + target_frame]
|
1122 |
+
body, ext = os.path.splitext(video_key)
|
1123 |
+
item_key = f"{body}_{crop_pos:05d}-{target_frame:03d}{ext}"
|
1124 |
+
batch_key = (*bucket_reso, target_frame) # bucket_reso with frame_count
|
1125 |
+
|
1126 |
+
item_info = ItemInfo(
|
1127 |
+
item_key, caption, original_frame_size, batch_key, frame_count=target_frame, content=cropped_video
|
1128 |
+
)
|
1129 |
+
item_info.latent_cache_path = self.get_latent_cache_path(item_info)
|
1130 |
+
|
1131 |
+
batch = batches.get(batch_key, [])
|
1132 |
+
batch.append(item_info)
|
1133 |
+
batches[batch_key] = batch
|
1134 |
+
|
1135 |
+
futures.remove(future)
|
1136 |
+
|
1137 |
+
def submit_batch(flush: bool = False):
|
1138 |
+
for key in batches:
|
1139 |
+
if len(batches[key]) >= self.batch_size or flush:
|
1140 |
+
batch = batches[key][0 : self.batch_size]
|
1141 |
+
if len(batches[key]) > self.batch_size:
|
1142 |
+
batches[key] = batches[key][self.batch_size :]
|
1143 |
+
else:
|
1144 |
+
del batches[key]
|
1145 |
+
return key, batch
|
1146 |
+
return None, None
|
1147 |
+
|
1148 |
+
for operator in self.datasource:
|
1149 |
+
|
1150 |
+
def fetch_and_resize(op: callable) -> tuple[tuple[int, int], str, list[np.ndarray], str]:
|
1151 |
+
video_key, video, caption = op()
|
1152 |
+
video: list[np.ndarray]
|
1153 |
+
frame_size = (video[0].shape[1], video[0].shape[0])
|
1154 |
+
|
1155 |
+
# resize if necessary
|
1156 |
+
bucket_reso = buckset_selector.get_bucket_resolution(frame_size)
|
1157 |
+
video = [resize_image_to_bucket(frame, bucket_reso) for frame in video]
|
1158 |
+
|
1159 |
+
return frame_size, video_key, video, caption
|
1160 |
+
|
1161 |
+
future = executor.submit(fetch_and_resize, operator)
|
1162 |
+
futures.append(future)
|
1163 |
+
aggregate_future()
|
1164 |
+
while True:
|
1165 |
+
key, batch = submit_batch()
|
1166 |
+
if key is None:
|
1167 |
+
break
|
1168 |
+
yield key, batch
|
1169 |
+
|
1170 |
+
aggregate_future(consume_all=True)
|
1171 |
+
while True:
|
1172 |
+
key, batch = submit_batch(flush=True)
|
1173 |
+
if key is None:
|
1174 |
+
break
|
1175 |
+
yield key, batch
|
1176 |
+
|
1177 |
+
executor.shutdown()
|
1178 |
+
|
1179 |
+
def retrieve_text_encoder_output_cache_batches(self, num_workers: int):
|
1180 |
+
return self._default_retrieve_text_encoder_output_cache_batches(self.datasource, self.batch_size, num_workers)
|
1181 |
+
|
1182 |
+
def prepare_for_training(self):
|
1183 |
+
bucket_selector = BucketSelector(self.resolution, self.enable_bucket, self.bucket_no_upscale)
|
1184 |
+
|
1185 |
+
# glob cache files
|
1186 |
+
latent_cache_files = glob.glob(os.path.join(self.cache_directory, f"*_{ARCHITECTURE_HUNYUAN_VIDEO}.safetensors"))
|
1187 |
+
|
1188 |
+
# assign cache files to item info
|
1189 |
+
bucketed_item_info: dict[tuple[int, int, int], list[ItemInfo]] = {} # (width, height, frame_count) -> [ItemInfo]
|
1190 |
+
for cache_file in latent_cache_files:
|
1191 |
+
tokens = os.path.basename(cache_file).split("_")
|
1192 |
+
|
1193 |
+
image_size = tokens[-2] # 0000x0000
|
1194 |
+
image_width, image_height = map(int, image_size.split("x"))
|
1195 |
+
image_size = (image_width, image_height)
|
1196 |
+
|
1197 |
+
frame_pos, frame_count = tokens[-3].split("-")
|
1198 |
+
frame_pos, frame_count = int(frame_pos), int(frame_count)
|
1199 |
+
|
1200 |
+
item_key = "_".join(tokens[:-3])
|
1201 |
+
text_encoder_output_cache_file = os.path.join(
|
1202 |
+
self.cache_directory, f"{item_key}_{ARCHITECTURE_HUNYUAN_VIDEO}_te.safetensors"
|
1203 |
+
)
|
1204 |
+
if not os.path.exists(text_encoder_output_cache_file):
|
1205 |
+
logger.warning(f"Text encoder output cache file not found: {text_encoder_output_cache_file}")
|
1206 |
+
continue
|
1207 |
+
|
1208 |
+
bucket_reso = bucket_selector.get_bucket_resolution(image_size)
|
1209 |
+
bucket_reso = (*bucket_reso, frame_count)
|
1210 |
+
item_info = ItemInfo(item_key, "", image_size, bucket_reso, frame_count=frame_count, latent_cache_path=cache_file)
|
1211 |
+
item_info.text_encoder_output_cache_path = text_encoder_output_cache_file
|
1212 |
+
|
1213 |
+
bucket = bucketed_item_info.get(bucket_reso, [])
|
1214 |
+
bucket.append(item_info)
|
1215 |
+
bucketed_item_info[bucket_reso] = bucket
|
1216 |
+
|
1217 |
+
# prepare batch manager
|
1218 |
+
self.batch_manager = BucketBatchManager(bucketed_item_info, self.batch_size)
|
1219 |
+
self.batch_manager.show_bucket_info()
|
1220 |
+
|
1221 |
+
self.num_train_items = sum([len(bucket) for bucket in bucketed_item_info.values()])
|
1222 |
+
|
1223 |
+
def shuffle_buckets(self):
|
1224 |
+
# set random seed for this epoch
|
1225 |
+
random.seed(self.seed + self.current_epoch)
|
1226 |
+
self.batch_manager.shuffle()
|
1227 |
+
|
1228 |
+
def __len__(self):
|
1229 |
+
if self.batch_manager is None:
|
1230 |
+
return 100 # dummy value
|
1231 |
+
return len(self.batch_manager)
|
1232 |
+
|
1233 |
+
def __getitem__(self, idx):
|
1234 |
+
return self.batch_manager[idx]
|
1235 |
+
|
1236 |
+
|
1237 |
+
class DatasetGroup(torch.utils.data.ConcatDataset):
|
1238 |
+
def __init__(self, datasets: Sequence[Union[ImageDataset, VideoDataset]]):
|
1239 |
+
super().__init__(datasets)
|
1240 |
+
self.datasets: list[Union[ImageDataset, VideoDataset]] = datasets
|
1241 |
+
self.num_train_items = 0
|
1242 |
+
for dataset in self.datasets:
|
1243 |
+
self.num_train_items += dataset.num_train_items
|
1244 |
+
|
1245 |
+
def set_current_epoch(self, epoch):
|
1246 |
+
for dataset in self.datasets:
|
1247 |
+
dataset.set_current_epoch(epoch)
|
1248 |
+
|
1249 |
+
def set_current_step(self, step):
|
1250 |
+
for dataset in self.datasets:
|
1251 |
+
dataset.set_current_step(step)
|
1252 |
+
|
1253 |
+
def set_max_train_steps(self, max_train_steps):
|
1254 |
+
for dataset in self.datasets:
|
1255 |
+
dataset.set_max_train_steps(max_train_steps)
|
hunyuan_model/__init__.py
ADDED
File without changes
|
hunyuan_model/activation_layers.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
|
4 |
+
def get_activation_layer(act_type):
|
5 |
+
"""get activation layer
|
6 |
+
|
7 |
+
Args:
|
8 |
+
act_type (str): the activation type
|
9 |
+
|
10 |
+
Returns:
|
11 |
+
torch.nn.functional: the activation layer
|
12 |
+
"""
|
13 |
+
if act_type == "gelu":
|
14 |
+
return lambda: nn.GELU()
|
15 |
+
elif act_type == "gelu_tanh":
|
16 |
+
# Approximate `tanh` requires torch >= 1.13
|
17 |
+
return lambda: nn.GELU(approximate="tanh")
|
18 |
+
elif act_type == "relu":
|
19 |
+
return nn.ReLU
|
20 |
+
elif act_type == "silu":
|
21 |
+
return nn.SiLU
|
22 |
+
else:
|
23 |
+
raise ValueError(f"Unknown activation type: {act_type}")
|
hunyuan_model/attention.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib.metadata
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
try:
|
9 |
+
import flash_attn
|
10 |
+
from flash_attn.flash_attn_interface import _flash_attn_forward
|
11 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
12 |
+
except ImportError:
|
13 |
+
flash_attn = None
|
14 |
+
flash_attn_varlen_func = None
|
15 |
+
_flash_attn_forward = None
|
16 |
+
|
17 |
+
try:
|
18 |
+
print(f"Trying to import sageattention")
|
19 |
+
from sageattention import sageattn_varlen
|
20 |
+
|
21 |
+
print("Successfully imported sageattention")
|
22 |
+
except ImportError:
|
23 |
+
print(f"Failed to import flash_attn and sageattention")
|
24 |
+
sageattn_varlen = None
|
25 |
+
|
26 |
+
MEMORY_LAYOUT = {
|
27 |
+
"flash": (
|
28 |
+
lambda x: x.view(x.shape[0] * x.shape[1], *x.shape[2:]),
|
29 |
+
lambda x: x,
|
30 |
+
),
|
31 |
+
"sageattn": (
|
32 |
+
lambda x: x.view(x.shape[0] * x.shape[1], *x.shape[2:]),
|
33 |
+
lambda x: x,
|
34 |
+
),
|
35 |
+
"torch": (
|
36 |
+
lambda x: x.transpose(1, 2),
|
37 |
+
lambda x: x.transpose(1, 2),
|
38 |
+
),
|
39 |
+
"vanilla": (
|
40 |
+
lambda x: x.transpose(1, 2),
|
41 |
+
lambda x: x.transpose(1, 2),
|
42 |
+
),
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
def get_cu_seqlens(text_mask, img_len):
|
47 |
+
"""Calculate cu_seqlens_q, cu_seqlens_kv using text_mask and img_len
|
48 |
+
|
49 |
+
Args:
|
50 |
+
text_mask (torch.Tensor): the mask of text
|
51 |
+
img_len (int): the length of image
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
torch.Tensor: the calculated cu_seqlens for flash attention
|
55 |
+
"""
|
56 |
+
batch_size = text_mask.shape[0]
|
57 |
+
text_len = text_mask.sum(dim=1)
|
58 |
+
max_len = text_mask.shape[1] + img_len
|
59 |
+
|
60 |
+
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
|
61 |
+
|
62 |
+
for i in range(batch_size):
|
63 |
+
s = text_len[i] + img_len
|
64 |
+
s1 = i * max_len + s
|
65 |
+
s2 = (i + 1) * max_len
|
66 |
+
cu_seqlens[2 * i + 1] = s1
|
67 |
+
cu_seqlens[2 * i + 2] = s2
|
68 |
+
|
69 |
+
return cu_seqlens
|
70 |
+
|
71 |
+
|
72 |
+
def attention(
|
73 |
+
q_or_qkv_list,
|
74 |
+
k=None,
|
75 |
+
v=None,
|
76 |
+
mode="flash",
|
77 |
+
drop_rate=0,
|
78 |
+
attn_mask=None,
|
79 |
+
causal=False,
|
80 |
+
cu_seqlens_q=None,
|
81 |
+
cu_seqlens_kv=None,
|
82 |
+
max_seqlen_q=None,
|
83 |
+
max_seqlen_kv=None,
|
84 |
+
batch_size=1,
|
85 |
+
):
|
86 |
+
"""
|
87 |
+
Perform QKV self attention.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
q (torch.Tensor): Query tensor with shape [b, s, a, d], where a is the number of heads.
|
91 |
+
k (torch.Tensor): Key tensor with shape [b, s1, a, d]
|
92 |
+
v (torch.Tensor): Value tensor with shape [b, s1, a, d]
|
93 |
+
mode (str): Attention mode. Choose from 'self_flash', 'cross_flash', 'torch', and 'vanilla'.
|
94 |
+
drop_rate (float): Dropout rate in attention map. (default: 0)
|
95 |
+
attn_mask (torch.Tensor): Attention mask with shape [b, s1] (cross_attn), or [b, a, s, s1] (torch or vanilla).
|
96 |
+
(default: None)
|
97 |
+
causal (bool): Whether to use causal attention. (default: False)
|
98 |
+
cu_seqlens_q (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
|
99 |
+
used to index into q.
|
100 |
+
cu_seqlens_kv (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
|
101 |
+
used to index into kv.
|
102 |
+
max_seqlen_q (int): The maximum sequence length in the batch of q.
|
103 |
+
max_seqlen_kv (int): The maximum sequence length in the batch of k and v.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
torch.Tensor: Output tensor after self attention with shape [b, s, ad]
|
107 |
+
"""
|
108 |
+
q, k, v = q_or_qkv_list if type(q_or_qkv_list) == list else (q_or_qkv_list, k, v)
|
109 |
+
pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode]
|
110 |
+
q = pre_attn_layout(q)
|
111 |
+
k = pre_attn_layout(k)
|
112 |
+
v = pre_attn_layout(v)
|
113 |
+
|
114 |
+
if mode == "torch":
|
115 |
+
if attn_mask is not None and attn_mask.dtype != torch.bool:
|
116 |
+
attn_mask = attn_mask.to(q.dtype)
|
117 |
+
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal)
|
118 |
+
if type(q_or_qkv_list) == list:
|
119 |
+
q_or_qkv_list.clear()
|
120 |
+
del q, k, v
|
121 |
+
del attn_mask
|
122 |
+
elif mode == "flash":
|
123 |
+
x = flash_attn_varlen_func(
|
124 |
+
q,
|
125 |
+
k,
|
126 |
+
v,
|
127 |
+
cu_seqlens_q,
|
128 |
+
cu_seqlens_kv,
|
129 |
+
max_seqlen_q,
|
130 |
+
max_seqlen_kv,
|
131 |
+
)
|
132 |
+
if type(q_or_qkv_list) == list:
|
133 |
+
q_or_qkv_list.clear()
|
134 |
+
del q, k, v
|
135 |
+
# x with shape [(bxs), a, d]
|
136 |
+
x = x.view(batch_size, max_seqlen_q, x.shape[-2], x.shape[-1]) # reshape x to [b, s, a, d]
|
137 |
+
elif mode == "sageattn":
|
138 |
+
x = sageattn_varlen(
|
139 |
+
q,
|
140 |
+
k,
|
141 |
+
v,
|
142 |
+
cu_seqlens_q,
|
143 |
+
cu_seqlens_kv,
|
144 |
+
max_seqlen_q,
|
145 |
+
max_seqlen_kv,
|
146 |
+
)
|
147 |
+
if type(q_or_qkv_list) == list:
|
148 |
+
q_or_qkv_list.clear()
|
149 |
+
del q, k, v
|
150 |
+
# x with shape [(bxs), a, d]
|
151 |
+
x = x.view(batch_size, max_seqlen_q, x.shape[-2], x.shape[-1]) # reshape x to [b, s, a, d]
|
152 |
+
elif mode == "vanilla":
|
153 |
+
scale_factor = 1 / math.sqrt(q.size(-1))
|
154 |
+
|
155 |
+
b, a, s, _ = q.shape
|
156 |
+
s1 = k.size(2)
|
157 |
+
attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device)
|
158 |
+
if causal:
|
159 |
+
# Only applied to self attention
|
160 |
+
assert attn_mask is None, "Causal mask and attn_mask cannot be used together"
|
161 |
+
temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril(diagonal=0)
|
162 |
+
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
163 |
+
attn_bias.to(q.dtype)
|
164 |
+
|
165 |
+
if attn_mask is not None:
|
166 |
+
if attn_mask.dtype == torch.bool:
|
167 |
+
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
168 |
+
else:
|
169 |
+
attn_bias += attn_mask
|
170 |
+
|
171 |
+
# TODO: Maybe force q and k to be float32 to avoid numerical overflow
|
172 |
+
attn = (q @ k.transpose(-2, -1)) * scale_factor
|
173 |
+
attn += attn_bias
|
174 |
+
attn = attn.softmax(dim=-1)
|
175 |
+
attn = torch.dropout(attn, p=drop_rate, train=True)
|
176 |
+
x = attn @ v
|
177 |
+
else:
|
178 |
+
raise NotImplementedError(f"Unsupported attention mode: {mode}")
|
179 |
+
|
180 |
+
x = post_attn_layout(x)
|
181 |
+
b, s, a, d = x.shape
|
182 |
+
out = x.reshape(b, s, -1)
|
183 |
+
return out
|
184 |
+
|
185 |
+
|
186 |
+
def parallel_attention(hybrid_seq_parallel_attn, q, k, v, img_q_len, img_kv_len, cu_seqlens_q, cu_seqlens_kv):
|
187 |
+
attn1 = hybrid_seq_parallel_attn(
|
188 |
+
None,
|
189 |
+
q[:, :img_q_len, :, :],
|
190 |
+
k[:, :img_kv_len, :, :],
|
191 |
+
v[:, :img_kv_len, :, :],
|
192 |
+
dropout_p=0.0,
|
193 |
+
causal=False,
|
194 |
+
joint_tensor_query=q[:, img_q_len : cu_seqlens_q[1]],
|
195 |
+
joint_tensor_key=k[:, img_kv_len : cu_seqlens_kv[1]],
|
196 |
+
joint_tensor_value=v[:, img_kv_len : cu_seqlens_kv[1]],
|
197 |
+
joint_strategy="rear",
|
198 |
+
)
|
199 |
+
if flash_attn.__version__ >= "2.7.0":
|
200 |
+
attn2, *_ = _flash_attn_forward(
|
201 |
+
q[:, cu_seqlens_q[1] :],
|
202 |
+
k[:, cu_seqlens_kv[1] :],
|
203 |
+
v[:, cu_seqlens_kv[1] :],
|
204 |
+
dropout_p=0.0,
|
205 |
+
softmax_scale=q.shape[-1] ** (-0.5),
|
206 |
+
causal=False,
|
207 |
+
window_size_left=-1,
|
208 |
+
window_size_right=-1,
|
209 |
+
softcap=0.0,
|
210 |
+
alibi_slopes=None,
|
211 |
+
return_softmax=False,
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
attn2, *_ = _flash_attn_forward(
|
215 |
+
q[:, cu_seqlens_q[1] :],
|
216 |
+
k[:, cu_seqlens_kv[1] :],
|
217 |
+
v[:, cu_seqlens_kv[1] :],
|
218 |
+
dropout_p=0.0,
|
219 |
+
softmax_scale=q.shape[-1] ** (-0.5),
|
220 |
+
causal=False,
|
221 |
+
window_size=(-1, -1),
|
222 |
+
softcap=0.0,
|
223 |
+
alibi_slopes=None,
|
224 |
+
return_softmax=False,
|
225 |
+
)
|
226 |
+
attn = torch.cat([attn1, attn2], dim=1)
|
227 |
+
b, s, a, d = attn.shape
|
228 |
+
attn = attn.reshape(b, s, -1)
|
229 |
+
|
230 |
+
return attn
|
hunyuan_model/autoencoder_kl_causal_3d.py
ADDED
@@ -0,0 +1,609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
#
|
16 |
+
# Modified from diffusers==0.29.2
|
17 |
+
#
|
18 |
+
# ==============================================================================
|
19 |
+
from typing import Dict, Optional, Tuple, Union
|
20 |
+
from dataclasses import dataclass
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
|
25 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
+
|
27 |
+
try:
|
28 |
+
# This diffusers is modified and packed in the mirror.
|
29 |
+
from diffusers.loaders import FromOriginalVAEMixin
|
30 |
+
except ImportError:
|
31 |
+
# Use this to be compatible with the original diffusers.
|
32 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin as FromOriginalVAEMixin
|
33 |
+
from diffusers.utils.accelerate_utils import apply_forward_hook
|
34 |
+
from diffusers.models.attention_processor import (
|
35 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
36 |
+
CROSS_ATTENTION_PROCESSORS,
|
37 |
+
Attention,
|
38 |
+
AttentionProcessor,
|
39 |
+
AttnAddedKVProcessor,
|
40 |
+
AttnProcessor,
|
41 |
+
)
|
42 |
+
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
43 |
+
from diffusers.models.modeling_utils import ModelMixin
|
44 |
+
from .vae import DecoderCausal3D, BaseOutput, DecoderOutput, DiagonalGaussianDistribution, EncoderCausal3D
|
45 |
+
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class DecoderOutput2(BaseOutput):
|
49 |
+
sample: torch.FloatTensor
|
50 |
+
posterior: Optional[DiagonalGaussianDistribution] = None
|
51 |
+
|
52 |
+
|
53 |
+
class AutoencoderKLCausal3D(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
|
54 |
+
r"""
|
55 |
+
A VAE model with KL loss for encoding images/videos into latents and decoding latent representations into images/videos.
|
56 |
+
|
57 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
58 |
+
for all models (such as downloading or saving).
|
59 |
+
"""
|
60 |
+
|
61 |
+
_supports_gradient_checkpointing = True
|
62 |
+
|
63 |
+
@register_to_config
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
in_channels: int = 3,
|
67 |
+
out_channels: int = 3,
|
68 |
+
down_block_types: Tuple[str] = ("DownEncoderBlockCausal3D",),
|
69 |
+
up_block_types: Tuple[str] = ("UpDecoderBlockCausal3D",),
|
70 |
+
block_out_channels: Tuple[int] = (64,),
|
71 |
+
layers_per_block: int = 1,
|
72 |
+
act_fn: str = "silu",
|
73 |
+
latent_channels: int = 4,
|
74 |
+
norm_num_groups: int = 32,
|
75 |
+
sample_size: int = 32,
|
76 |
+
sample_tsize: int = 64,
|
77 |
+
scaling_factor: float = 0.18215,
|
78 |
+
force_upcast: float = True,
|
79 |
+
spatial_compression_ratio: int = 8,
|
80 |
+
time_compression_ratio: int = 4,
|
81 |
+
mid_block_add_attention: bool = True,
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.time_compression_ratio = time_compression_ratio
|
86 |
+
|
87 |
+
self.encoder = EncoderCausal3D(
|
88 |
+
in_channels=in_channels,
|
89 |
+
out_channels=latent_channels,
|
90 |
+
down_block_types=down_block_types,
|
91 |
+
block_out_channels=block_out_channels,
|
92 |
+
layers_per_block=layers_per_block,
|
93 |
+
act_fn=act_fn,
|
94 |
+
norm_num_groups=norm_num_groups,
|
95 |
+
double_z=True,
|
96 |
+
time_compression_ratio=time_compression_ratio,
|
97 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
98 |
+
mid_block_add_attention=mid_block_add_attention,
|
99 |
+
)
|
100 |
+
|
101 |
+
self.decoder = DecoderCausal3D(
|
102 |
+
in_channels=latent_channels,
|
103 |
+
out_channels=out_channels,
|
104 |
+
up_block_types=up_block_types,
|
105 |
+
block_out_channels=block_out_channels,
|
106 |
+
layers_per_block=layers_per_block,
|
107 |
+
norm_num_groups=norm_num_groups,
|
108 |
+
act_fn=act_fn,
|
109 |
+
time_compression_ratio=time_compression_ratio,
|
110 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
111 |
+
mid_block_add_attention=mid_block_add_attention,
|
112 |
+
)
|
113 |
+
|
114 |
+
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
|
115 |
+
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
|
116 |
+
|
117 |
+
self.use_slicing = False
|
118 |
+
self.use_spatial_tiling = False
|
119 |
+
self.use_temporal_tiling = False
|
120 |
+
|
121 |
+
# only relevant if vae tiling is enabled
|
122 |
+
self.tile_sample_min_tsize = sample_tsize
|
123 |
+
self.tile_latent_min_tsize = sample_tsize // time_compression_ratio
|
124 |
+
|
125 |
+
self.tile_sample_min_size = self.config.sample_size
|
126 |
+
sample_size = self.config.sample_size[0] if isinstance(self.config.sample_size, (list, tuple)) else self.config.sample_size
|
127 |
+
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
|
128 |
+
self.tile_overlap_factor = 0.25
|
129 |
+
|
130 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
131 |
+
if isinstance(module, (EncoderCausal3D, DecoderCausal3D)):
|
132 |
+
module.gradient_checkpointing = value
|
133 |
+
|
134 |
+
def enable_temporal_tiling(self, use_tiling: bool = True):
|
135 |
+
self.use_temporal_tiling = use_tiling
|
136 |
+
|
137 |
+
def disable_temporal_tiling(self):
|
138 |
+
self.enable_temporal_tiling(False)
|
139 |
+
|
140 |
+
def enable_spatial_tiling(self, use_tiling: bool = True):
|
141 |
+
self.use_spatial_tiling = use_tiling
|
142 |
+
|
143 |
+
def disable_spatial_tiling(self):
|
144 |
+
self.enable_spatial_tiling(False)
|
145 |
+
|
146 |
+
def enable_tiling(self, use_tiling: bool = True):
|
147 |
+
r"""
|
148 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
149 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
150 |
+
processing larger videos.
|
151 |
+
"""
|
152 |
+
self.enable_spatial_tiling(use_tiling)
|
153 |
+
self.enable_temporal_tiling(use_tiling)
|
154 |
+
|
155 |
+
def disable_tiling(self):
|
156 |
+
r"""
|
157 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
158 |
+
decoding in one step.
|
159 |
+
"""
|
160 |
+
self.disable_spatial_tiling()
|
161 |
+
self.disable_temporal_tiling()
|
162 |
+
|
163 |
+
def enable_slicing(self):
|
164 |
+
r"""
|
165 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
166 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
167 |
+
"""
|
168 |
+
self.use_slicing = True
|
169 |
+
|
170 |
+
def disable_slicing(self):
|
171 |
+
r"""
|
172 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
173 |
+
decoding in one step.
|
174 |
+
"""
|
175 |
+
self.use_slicing = False
|
176 |
+
|
177 |
+
def set_chunk_size_for_causal_conv_3d(self, chunk_size: int):
|
178 |
+
# set chunk_size to CausalConv3d recursively
|
179 |
+
def set_chunk_size(module):
|
180 |
+
if hasattr(module, "chunk_size"):
|
181 |
+
module.chunk_size = chunk_size
|
182 |
+
|
183 |
+
self.apply(set_chunk_size)
|
184 |
+
|
185 |
+
@property
|
186 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
187 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
188 |
+
r"""
|
189 |
+
Returns:
|
190 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
191 |
+
indexed by its weight name.
|
192 |
+
"""
|
193 |
+
# set recursively
|
194 |
+
processors = {}
|
195 |
+
|
196 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
197 |
+
if hasattr(module, "get_processor"):
|
198 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
199 |
+
|
200 |
+
for sub_name, child in module.named_children():
|
201 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
202 |
+
|
203 |
+
return processors
|
204 |
+
|
205 |
+
for name, module in self.named_children():
|
206 |
+
fn_recursive_add_processors(name, module, processors)
|
207 |
+
|
208 |
+
return processors
|
209 |
+
|
210 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
211 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False):
|
212 |
+
r"""
|
213 |
+
Sets the attention processor to use to compute attention.
|
214 |
+
|
215 |
+
Parameters:
|
216 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
217 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
218 |
+
for **all** `Attention` layers.
|
219 |
+
|
220 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
221 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
222 |
+
|
223 |
+
"""
|
224 |
+
count = len(self.attn_processors.keys())
|
225 |
+
|
226 |
+
if isinstance(processor, dict) and len(processor) != count:
|
227 |
+
raise ValueError(
|
228 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
229 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
230 |
+
)
|
231 |
+
|
232 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
233 |
+
if hasattr(module, "set_processor"):
|
234 |
+
if not isinstance(processor, dict):
|
235 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
236 |
+
else:
|
237 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
238 |
+
|
239 |
+
for sub_name, child in module.named_children():
|
240 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
241 |
+
|
242 |
+
for name, module in self.named_children():
|
243 |
+
fn_recursive_attn_processor(name, module, processor)
|
244 |
+
|
245 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
246 |
+
def set_default_attn_processor(self):
|
247 |
+
"""
|
248 |
+
Disables custom attention processors and sets the default attention implementation.
|
249 |
+
"""
|
250 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
251 |
+
processor = AttnAddedKVProcessor()
|
252 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
253 |
+
processor = AttnProcessor()
|
254 |
+
else:
|
255 |
+
raise ValueError(
|
256 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
257 |
+
)
|
258 |
+
|
259 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
260 |
+
|
261 |
+
@apply_forward_hook
|
262 |
+
def encode(
|
263 |
+
self, x: torch.FloatTensor, return_dict: bool = True
|
264 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
265 |
+
"""
|
266 |
+
Encode a batch of images/videos into latents.
|
267 |
+
|
268 |
+
Args:
|
269 |
+
x (`torch.FloatTensor`): Input batch of images/videos.
|
270 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
271 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
272 |
+
|
273 |
+
Returns:
|
274 |
+
The latent representations of the encoded images/videos. If `return_dict` is True, a
|
275 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
276 |
+
"""
|
277 |
+
assert len(x.shape) == 5, "The input tensor should have 5 dimensions."
|
278 |
+
|
279 |
+
if self.use_temporal_tiling and x.shape[2] > self.tile_sample_min_tsize:
|
280 |
+
return self.temporal_tiled_encode(x, return_dict=return_dict)
|
281 |
+
|
282 |
+
if self.use_spatial_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
|
283 |
+
return self.spatial_tiled_encode(x, return_dict=return_dict)
|
284 |
+
|
285 |
+
if self.use_slicing and x.shape[0] > 1:
|
286 |
+
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
|
287 |
+
h = torch.cat(encoded_slices)
|
288 |
+
else:
|
289 |
+
h = self.encoder(x)
|
290 |
+
|
291 |
+
moments = self.quant_conv(h)
|
292 |
+
posterior = DiagonalGaussianDistribution(moments)
|
293 |
+
|
294 |
+
if not return_dict:
|
295 |
+
return (posterior,)
|
296 |
+
|
297 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
298 |
+
|
299 |
+
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
300 |
+
assert len(z.shape) == 5, "The input tensor should have 5 dimensions."
|
301 |
+
|
302 |
+
if self.use_temporal_tiling and z.shape[2] > self.tile_latent_min_tsize:
|
303 |
+
return self.temporal_tiled_decode(z, return_dict=return_dict)
|
304 |
+
|
305 |
+
if self.use_spatial_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
|
306 |
+
return self.spatial_tiled_decode(z, return_dict=return_dict)
|
307 |
+
|
308 |
+
z = self.post_quant_conv(z)
|
309 |
+
dec = self.decoder(z)
|
310 |
+
|
311 |
+
if not return_dict:
|
312 |
+
return (dec,)
|
313 |
+
|
314 |
+
return DecoderOutput(sample=dec)
|
315 |
+
|
316 |
+
@apply_forward_hook
|
317 |
+
def decode(self, z: torch.FloatTensor, return_dict: bool = True, generator=None) -> Union[DecoderOutput, torch.FloatTensor]:
|
318 |
+
"""
|
319 |
+
Decode a batch of images/videos.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
z (`torch.FloatTensor`): Input batch of latent vectors.
|
323 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
324 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
325 |
+
|
326 |
+
Returns:
|
327 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
328 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
329 |
+
returned.
|
330 |
+
|
331 |
+
"""
|
332 |
+
if self.use_slicing and z.shape[0] > 1:
|
333 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
334 |
+
decoded = torch.cat(decoded_slices)
|
335 |
+
else:
|
336 |
+
decoded = self._decode(z).sample
|
337 |
+
|
338 |
+
if not return_dict:
|
339 |
+
return (decoded,)
|
340 |
+
|
341 |
+
return DecoderOutput(sample=decoded)
|
342 |
+
|
343 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
344 |
+
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
|
345 |
+
for y in range(blend_extent):
|
346 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
|
347 |
+
return b
|
348 |
+
|
349 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
350 |
+
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
|
351 |
+
for x in range(blend_extent):
|
352 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
|
353 |
+
return b
|
354 |
+
|
355 |
+
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
356 |
+
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
|
357 |
+
for x in range(blend_extent):
|
358 |
+
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (x / blend_extent)
|
359 |
+
return b
|
360 |
+
|
361 |
+
def spatial_tiled_encode(
|
362 |
+
self, x: torch.FloatTensor, return_dict: bool = True, return_moments: bool = False
|
363 |
+
) -> AutoencoderKLOutput:
|
364 |
+
r"""Encode a batch of images/videos using a tiled encoder.
|
365 |
+
|
366 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
367 |
+
steps. This is useful to keep memory use constant regardless of image/videos size. The end result of tiled encoding is
|
368 |
+
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
|
369 |
+
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
|
370 |
+
output, but they should be much less noticeable.
|
371 |
+
|
372 |
+
Args:
|
373 |
+
x (`torch.FloatTensor`): Input batch of images/videos.
|
374 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
375 |
+
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
|
379 |
+
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
|
380 |
+
`tuple` is returned.
|
381 |
+
"""
|
382 |
+
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
|
383 |
+
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
|
384 |
+
row_limit = self.tile_latent_min_size - blend_extent
|
385 |
+
|
386 |
+
# Split video into tiles and encode them separately.
|
387 |
+
rows = []
|
388 |
+
for i in range(0, x.shape[-2], overlap_size):
|
389 |
+
row = []
|
390 |
+
for j in range(0, x.shape[-1], overlap_size):
|
391 |
+
tile = x[:, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
|
392 |
+
tile = self.encoder(tile)
|
393 |
+
tile = self.quant_conv(tile)
|
394 |
+
row.append(tile)
|
395 |
+
rows.append(row)
|
396 |
+
result_rows = []
|
397 |
+
for i, row in enumerate(rows):
|
398 |
+
result_row = []
|
399 |
+
for j, tile in enumerate(row):
|
400 |
+
# blend the above tile and the left tile
|
401 |
+
# to the current tile and add the current tile to the result row
|
402 |
+
if i > 0:
|
403 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
404 |
+
if j > 0:
|
405 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
406 |
+
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
407 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
408 |
+
|
409 |
+
moments = torch.cat(result_rows, dim=-2)
|
410 |
+
if return_moments:
|
411 |
+
return moments
|
412 |
+
|
413 |
+
posterior = DiagonalGaussianDistribution(moments)
|
414 |
+
if not return_dict:
|
415 |
+
return (posterior,)
|
416 |
+
|
417 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
418 |
+
|
419 |
+
def spatial_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
420 |
+
r"""
|
421 |
+
Decode a batch of images/videos using a tiled decoder.
|
422 |
+
|
423 |
+
Args:
|
424 |
+
z (`torch.FloatTensor`): Input batch of latent vectors.
|
425 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
426 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
427 |
+
|
428 |
+
Returns:
|
429 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
430 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
431 |
+
returned.
|
432 |
+
"""
|
433 |
+
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
|
434 |
+
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
|
435 |
+
row_limit = self.tile_sample_min_size - blend_extent
|
436 |
+
|
437 |
+
# Split z into overlapping tiles and decode them separately.
|
438 |
+
# The tiles have an overlap to avoid seams between tiles.
|
439 |
+
rows = []
|
440 |
+
for i in range(0, z.shape[-2], overlap_size):
|
441 |
+
row = []
|
442 |
+
for j in range(0, z.shape[-1], overlap_size):
|
443 |
+
tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
|
444 |
+
tile = self.post_quant_conv(tile)
|
445 |
+
decoded = self.decoder(tile)
|
446 |
+
row.append(decoded)
|
447 |
+
rows.append(row)
|
448 |
+
result_rows = []
|
449 |
+
for i, row in enumerate(rows):
|
450 |
+
result_row = []
|
451 |
+
for j, tile in enumerate(row):
|
452 |
+
# blend the above tile and the left tile
|
453 |
+
# to the current tile and add the current tile to the result row
|
454 |
+
if i > 0:
|
455 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
456 |
+
if j > 0:
|
457 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
458 |
+
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
459 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
460 |
+
|
461 |
+
dec = torch.cat(result_rows, dim=-2)
|
462 |
+
if not return_dict:
|
463 |
+
return (dec,)
|
464 |
+
|
465 |
+
return DecoderOutput(sample=dec)
|
466 |
+
|
467 |
+
def temporal_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
|
468 |
+
|
469 |
+
B, C, T, H, W = x.shape
|
470 |
+
overlap_size = int(self.tile_sample_min_tsize * (1 - self.tile_overlap_factor))
|
471 |
+
blend_extent = int(self.tile_latent_min_tsize * self.tile_overlap_factor)
|
472 |
+
t_limit = self.tile_latent_min_tsize - blend_extent
|
473 |
+
|
474 |
+
# Split the video into tiles and encode them separately.
|
475 |
+
row = []
|
476 |
+
for i in range(0, T, overlap_size):
|
477 |
+
tile = x[:, :, i : i + self.tile_sample_min_tsize + 1, :, :]
|
478 |
+
if self.use_spatial_tiling and (
|
479 |
+
tile.shape[-1] > self.tile_sample_min_size or tile.shape[-2] > self.tile_sample_min_size
|
480 |
+
):
|
481 |
+
tile = self.spatial_tiled_encode(tile, return_moments=True)
|
482 |
+
else:
|
483 |
+
tile = self.encoder(tile)
|
484 |
+
tile = self.quant_conv(tile)
|
485 |
+
if i > 0:
|
486 |
+
tile = tile[:, :, 1:, :, :]
|
487 |
+
row.append(tile)
|
488 |
+
result_row = []
|
489 |
+
for i, tile in enumerate(row):
|
490 |
+
if i > 0:
|
491 |
+
tile = self.blend_t(row[i - 1], tile, blend_extent)
|
492 |
+
result_row.append(tile[:, :, :t_limit, :, :])
|
493 |
+
else:
|
494 |
+
result_row.append(tile[:, :, : t_limit + 1, :, :])
|
495 |
+
|
496 |
+
moments = torch.cat(result_row, dim=2)
|
497 |
+
posterior = DiagonalGaussianDistribution(moments)
|
498 |
+
|
499 |
+
if not return_dict:
|
500 |
+
return (posterior,)
|
501 |
+
|
502 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
503 |
+
|
504 |
+
def temporal_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
505 |
+
# Split z into overlapping tiles and decode them separately.
|
506 |
+
|
507 |
+
B, C, T, H, W = z.shape
|
508 |
+
overlap_size = int(self.tile_latent_min_tsize * (1 - self.tile_overlap_factor))
|
509 |
+
blend_extent = int(self.tile_sample_min_tsize * self.tile_overlap_factor)
|
510 |
+
t_limit = self.tile_sample_min_tsize - blend_extent
|
511 |
+
|
512 |
+
row = []
|
513 |
+
for i in range(0, T, overlap_size):
|
514 |
+
tile = z[:, :, i : i + self.tile_latent_min_tsize + 1, :, :]
|
515 |
+
if self.use_spatial_tiling and (
|
516 |
+
tile.shape[-1] > self.tile_latent_min_size or tile.shape[-2] > self.tile_latent_min_size
|
517 |
+
):
|
518 |
+
decoded = self.spatial_tiled_decode(tile, return_dict=True).sample
|
519 |
+
else:
|
520 |
+
tile = self.post_quant_conv(tile)
|
521 |
+
decoded = self.decoder(tile)
|
522 |
+
if i > 0:
|
523 |
+
decoded = decoded[:, :, 1:, :, :]
|
524 |
+
row.append(decoded)
|
525 |
+
result_row = []
|
526 |
+
for i, tile in enumerate(row):
|
527 |
+
if i > 0:
|
528 |
+
tile = self.blend_t(row[i - 1], tile, blend_extent)
|
529 |
+
result_row.append(tile[:, :, :t_limit, :, :])
|
530 |
+
else:
|
531 |
+
result_row.append(tile[:, :, : t_limit + 1, :, :])
|
532 |
+
|
533 |
+
dec = torch.cat(result_row, dim=2)
|
534 |
+
if not return_dict:
|
535 |
+
return (dec,)
|
536 |
+
|
537 |
+
return DecoderOutput(sample=dec)
|
538 |
+
|
539 |
+
def forward(
|
540 |
+
self,
|
541 |
+
sample: torch.FloatTensor,
|
542 |
+
sample_posterior: bool = False,
|
543 |
+
return_dict: bool = True,
|
544 |
+
return_posterior: bool = False,
|
545 |
+
generator: Optional[torch.Generator] = None,
|
546 |
+
) -> Union[DecoderOutput2, torch.FloatTensor]:
|
547 |
+
r"""
|
548 |
+
Args:
|
549 |
+
sample (`torch.FloatTensor`): Input sample.
|
550 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
551 |
+
Whether to sample from the posterior.
|
552 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
553 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
554 |
+
"""
|
555 |
+
x = sample
|
556 |
+
posterior = self.encode(x).latent_dist
|
557 |
+
if sample_posterior:
|
558 |
+
z = posterior.sample(generator=generator)
|
559 |
+
else:
|
560 |
+
z = posterior.mode()
|
561 |
+
dec = self.decode(z).sample
|
562 |
+
|
563 |
+
if not return_dict:
|
564 |
+
if return_posterior:
|
565 |
+
return (dec, posterior)
|
566 |
+
else:
|
567 |
+
return (dec,)
|
568 |
+
if return_posterior:
|
569 |
+
return DecoderOutput2(sample=dec, posterior=posterior)
|
570 |
+
else:
|
571 |
+
return DecoderOutput2(sample=dec)
|
572 |
+
|
573 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
574 |
+
def fuse_qkv_projections(self):
|
575 |
+
"""
|
576 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
577 |
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
578 |
+
|
579 |
+
<Tip warning={true}>
|
580 |
+
|
581 |
+
This API is 🧪 experimental.
|
582 |
+
|
583 |
+
</Tip>
|
584 |
+
"""
|
585 |
+
self.original_attn_processors = None
|
586 |
+
|
587 |
+
for _, attn_processor in self.attn_processors.items():
|
588 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
589 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
590 |
+
|
591 |
+
self.original_attn_processors = self.attn_processors
|
592 |
+
|
593 |
+
for module in self.modules():
|
594 |
+
if isinstance(module, Attention):
|
595 |
+
module.fuse_projections(fuse=True)
|
596 |
+
|
597 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
598 |
+
def unfuse_qkv_projections(self):
|
599 |
+
"""Disables the fused QKV projection if enabled.
|
600 |
+
|
601 |
+
<Tip warning={true}>
|
602 |
+
|
603 |
+
This API is 🧪 experimental.
|
604 |
+
|
605 |
+
</Tip>
|
606 |
+
|
607 |
+
"""
|
608 |
+
if self.original_attn_processors is not None:
|
609 |
+
self.set_attn_processor(self.original_attn_processors)
|
hunyuan_model/embed_layers.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
|
7 |
+
from .helpers import to_2tuple
|
8 |
+
|
9 |
+
class PatchEmbed(nn.Module):
|
10 |
+
"""2D Image to Patch Embedding
|
11 |
+
|
12 |
+
Image to Patch Embedding using Conv2d
|
13 |
+
|
14 |
+
A convolution based approach to patchifying a 2D image w/ embedding projection.
|
15 |
+
|
16 |
+
Based on the impl in https://github.com/google-research/vision_transformer
|
17 |
+
|
18 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
19 |
+
|
20 |
+
Remove the _assert function in forward function to be compatible with multi-resolution images.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
patch_size=16,
|
26 |
+
in_chans=3,
|
27 |
+
embed_dim=768,
|
28 |
+
norm_layer=None,
|
29 |
+
flatten=True,
|
30 |
+
bias=True,
|
31 |
+
dtype=None,
|
32 |
+
device=None,
|
33 |
+
):
|
34 |
+
factory_kwargs = {"dtype": dtype, "device": device}
|
35 |
+
super().__init__()
|
36 |
+
patch_size = to_2tuple(patch_size)
|
37 |
+
self.patch_size = patch_size
|
38 |
+
self.flatten = flatten
|
39 |
+
|
40 |
+
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, **factory_kwargs)
|
41 |
+
nn.init.xavier_uniform_(self.proj.weight.view(self.proj.weight.size(0), -1))
|
42 |
+
if bias:
|
43 |
+
nn.init.zeros_(self.proj.bias)
|
44 |
+
|
45 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
x = self.proj(x)
|
49 |
+
if self.flatten:
|
50 |
+
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
|
51 |
+
x = self.norm(x)
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
class TextProjection(nn.Module):
|
56 |
+
"""
|
57 |
+
Projects text embeddings. Also handles dropout for classifier-free guidance.
|
58 |
+
|
59 |
+
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None):
|
63 |
+
factory_kwargs = {"dtype": dtype, "device": device}
|
64 |
+
super().__init__()
|
65 |
+
self.linear_1 = nn.Linear(in_features=in_channels, out_features=hidden_size, bias=True, **factory_kwargs)
|
66 |
+
self.act_1 = act_layer()
|
67 |
+
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True, **factory_kwargs)
|
68 |
+
|
69 |
+
def forward(self, caption):
|
70 |
+
hidden_states = self.linear_1(caption)
|
71 |
+
hidden_states = self.act_1(hidden_states)
|
72 |
+
hidden_states = self.linear_2(hidden_states)
|
73 |
+
return hidden_states
|
74 |
+
|
75 |
+
|
76 |
+
def timestep_embedding(t, dim, max_period=10000):
|
77 |
+
"""
|
78 |
+
Create sinusoidal timestep embeddings.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional.
|
82 |
+
dim (int): the dimension of the output.
|
83 |
+
max_period (int): controls the minimum frequency of the embeddings.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
embedding (torch.Tensor): An (N, D) Tensor of positional embeddings.
|
87 |
+
|
88 |
+
.. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
89 |
+
"""
|
90 |
+
half = dim // 2
|
91 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=t.device)
|
92 |
+
args = t[:, None].float() * freqs[None]
|
93 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
94 |
+
if dim % 2:
|
95 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
96 |
+
return embedding
|
97 |
+
|
98 |
+
|
99 |
+
class TimestepEmbedder(nn.Module):
|
100 |
+
"""
|
101 |
+
Embeds scalar timesteps into vector representations.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
hidden_size,
|
107 |
+
act_layer,
|
108 |
+
frequency_embedding_size=256,
|
109 |
+
max_period=10000,
|
110 |
+
out_size=None,
|
111 |
+
dtype=None,
|
112 |
+
device=None,
|
113 |
+
):
|
114 |
+
factory_kwargs = {"dtype": dtype, "device": device}
|
115 |
+
super().__init__()
|
116 |
+
self.frequency_embedding_size = frequency_embedding_size
|
117 |
+
self.max_period = max_period
|
118 |
+
if out_size is None:
|
119 |
+
out_size = hidden_size
|
120 |
+
|
121 |
+
self.mlp = nn.Sequential(
|
122 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True, **factory_kwargs),
|
123 |
+
act_layer(),
|
124 |
+
nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs),
|
125 |
+
)
|
126 |
+
nn.init.normal_(self.mlp[0].weight, std=0.02)
|
127 |
+
nn.init.normal_(self.mlp[2].weight, std=0.02)
|
128 |
+
|
129 |
+
def forward(self, t):
|
130 |
+
t_freq = timestep_embedding(t, self.frequency_embedding_size, self.max_period).type(self.mlp[0].weight.dtype)
|
131 |
+
t_emb = self.mlp(t_freq)
|
132 |
+
return t_emb
|