Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -1,3 +1,54 @@ | |
| 1 | 
             
            ---
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 2 | 
             
            license: apache-2.0
         | 
|  | |
|  | |
|  | |
|  | |
| 3 | 
             
            ---
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
            +
            base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
         | 
| 3 | 
            +
            tags:
         | 
| 4 | 
            +
            - instruction-following
         | 
| 5 | 
            +
            - conversational-ai
         | 
| 6 | 
            +
            - lora
         | 
| 7 | 
            +
            - alpaca
         | 
| 8 | 
            +
            - 4bit
         | 
| 9 | 
            +
            - intruct
         | 
| 10 | 
             
            license: apache-2.0
         | 
| 11 | 
            +
            datasets:
         | 
| 12 | 
            +
            - tatsu-lab/alpaca
         | 
| 13 | 
            +
            language:
         | 
| 14 | 
            +
            - en
         | 
| 15 | 
             
            ---
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            # DeepSeek-R1-Distill-Qwen-1.5B-Alpaca-Instruct
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            Fine-tuned DeepSeek-R1-Distill-Qwen-1.5B for instruction-following tasks using LoRA on the Alpaca dataset.
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            ## Overview
         | 
| 22 | 
            +
            - **Base Model:** deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B (1.5B parameters)
         | 
| 23 | 
            +
            - **Fine-tuning Method:** LoRA (4-bit quantization)
         | 
| 24 | 
            +
            - **Dataset:** Alpaca instruction dataset (52K samples)
         | 
| 25 | 
            +
            - **Training:** 3 epochs with optimized hyperparameters
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            ## Key Features
         | 
| 28 | 
            +
            - Improved instruction following capabilities
         | 
| 29 | 
            +
            - Conversational AI for question answering
         | 
| 30 | 
            +
            - Memory efficient training with LoRA
         | 
| 31 | 
            +
            - Production-ready merged model
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            ## Usage
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            ```python
         | 
| 36 | 
            +
            from transformers import AutoTokenizer, AutoModelForCausalLM
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            model = AutoModelForCausalLM.from_pretrained("sweatSmile/DeepSeek-R1-Distill-Qwen-1.5B-Alpaca-Instruct")
         | 
| 39 | 
            +
            tokenizer = AutoTokenizer.from_pretrained("sweatSmile/DeepSeek-R1-Distill-Qwen-1.5B-Alpaca-Instruct")
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            # Example
         | 
| 42 | 
            +
            prompt = "Human: What is machine learning?\n\nAssistant:"
         | 
| 43 | 
            +
            inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 44 | 
            +
            outputs = model.generate(**inputs, max_new_tokens=200)
         | 
| 45 | 
            +
            print(tokenizer.decode(outputs[0], skip_special_tokens=True))
         | 
| 46 | 
            +
            ```
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            ## Training Details
         | 
| 49 | 
            +
            - LoRA rank: 8, alpha: 16
         | 
| 50 | 
            +
            - 4-bit NF4 quantization with bfloat16
         | 
| 51 | 
            +
            - Learning rate: 1e-4 with cosine scheduling
         | 
| 52 | 
            +
            - Batch size: 8, Max length: 512 tokens
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            Trained for efficient deployment in production environments.
         |