sweelol commited on
Commit
922922f
·
verified ·
1 Parent(s): faa6798

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -24
README.md CHANGED
@@ -1,55 +1,104 @@
1
  ---
 
 
 
2
  base_model: google/gemma-3-270m
3
  library_name: peft
4
  pipeline_tag: text-generation
5
  tags:
6
  - base_model:adapter:google/gemma-3-270m
7
  - transformers
 
 
 
 
 
8
  ---
9
 
10
- # Model Card for Model ID
11
 
12
- <!-- Provide a quick summary of what the model is/does. -->
13
 
 
14
 
 
15
 
16
- ## Model Details
17
 
18
- ### Model Description
 
 
 
 
 
19
 
20
- <!-- Provide a longer summary of what this model is. -->
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
 
23
 
24
- - **Developed by:** [More Information Needed]
25
- - **Funded by [optional]:** [More Information Needed]
26
- - **Shared by [optional]:** [More Information Needed]
27
- - **Model type:** [More Information Needed]
28
- - **Language(s) (NLP):** [More Information Needed]
29
- - **License:** [More Information Needed]
30
- - **Finetuned from model [optional]:** [More Information Needed]
31
 
32
- ### Model Sources [optional]
 
 
33
 
34
- <!-- Provide the basic links for the model. -->
35
 
36
- - **Repository:** [More Information Needed]
37
- - **Paper [optional]:** [More Information Needed]
38
- - **Demo [optional]:** [More Information Needed]
39
 
40
- ## Uses
 
 
41
 
42
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
43
 
44
- ### Direct Use
45
 
46
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
47
 
48
- [More Information Needed]
 
 
 
49
 
50
- ### Downstream Use [optional]
 
 
 
 
 
51
 
52
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
 
55
  ## Evaluation Results
 
1
  ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - databricks/databricks-dolly-15k
5
  base_model: google/gemma-3-270m
6
  library_name: peft
7
  pipeline_tag: text-generation
8
  tags:
9
  - base_model:adapter:google/gemma-3-270m
10
  - transformers
11
+ - google
12
+ - gemma3
13
+ - prompt-tune
14
+ - sweelol-ai
15
+ - peft
16
  ---
17
 
18
+ # sweelol/pt-gemma3-270m-dolly
19
 
20
+ This model is part of the **Sweelol AI Hub**, a research project focused on efficient fine-tuning of modern language models on Kaggle accelerators.
21
 
22
+ **Full Research Notebook & Benchmark Results:** [Coming soon]
23
 
24
+ This model is part of the **Sweelol AI Hub** collection, resulting from experiments in efficient fine-tuning, optimization strategies and knowledge distillation on the Gemma-3-270m architecture using the Databricks Dolly-15k dataset on Kaggle TPUs/GPUs.
25
 
26
+ This is a **LoRA-adapted** version of the `google/gemma-3-270m` model. It was fine-tuned on the Databricks Dolly-15k dataset using the **Low-Rank Adaptation (LoRA)** technique. LoRA is a parameter-efficient fine-tuning method that freezes the original model weights and injects trainable low-rank matrices into the attention layers. This allows the model to learn task-specific knowledge (instruction following) while keeping the overall number of trainable parameters low. Only the LoRA adapter weights need to be stored, making this model highly efficient to deploy.
27
 
28
+ - **Developed by:** SweeLOL-ai
29
+ - **Shared by:** SweeLOL ai
30
+ - **Model type:** Causal Language Model
31
+ - **Language(s) (NLP):** English
32
+ - **License:** Apache 2.0
33
+ - **Base Model:** `google/gemma-3-270m`
34
 
 
35
 
36
+ ### Description
37
+
38
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
39
+ built from the same research and technology used to create the Gemini models.
40
+ Gemma 3 models are multimodal, handling text and image input and generating text
41
+ output, with open weights for both pre-trained variants and instruction-tuned
42
+ variants. Gemma 3 has a large, 128K context window, multilingual support in over
43
+ 140 languages, and is available in more sizes than previous versions. Gemma 3
44
+ models are well-suited for a variety of text generation and image understanding
45
+ tasks, including question answering, summarization, and reasoning. Their
46
+ relatively small size makes it possible to deploy them in environments with
47
+ limited resources such as laptops, desktops or your own cloud infrastructure,
48
+ democratizing access to state of the art AI models and helping foster innovation
49
+ for everyone.
50
 
51
+ ### Usage
52
 
53
+ Below, there are some code snippets on how to get quickly started with running the model. First, install the Transformers library. Gemma 3 is supported starting from transformers 4.50.0.
 
 
 
 
 
 
54
 
55
+ ```sh
56
+ $ pip install -U transformers
57
+ ```
58
 
59
+ Then, copy the snippet from the section that is relevant for your use case.
60
 
61
+ #### Running with the `pipeline` API
 
 
62
 
63
+ ```python
64
+ from transformers import pipeline
65
+ import torch
66
 
67
+ pipe = pipeline("text-generation", model="sweelol/pt-gemma3-270m-dolly", device="cuda", torch_dtype=torch.bfloat16)
68
+ output = pipe("Eiffel tower is located in", max_new_tokens=50)
69
+ ```
70
 
71
+ #### Running the model on a single / multi GPU
72
 
73
+ ```python
74
+ import torch
75
+ from transformers import AutoTokenizer,
76
 
77
+ tokenizer = AutoTokenizer.from_pretrained("sweelol/pt-gemma3-270m-dolly")
78
+ if tokenizer.pad_token is None:
79
+ tokenizer.pad_token = tokenizer.eos_token
80
+ print("✅ Set tokenizer pad_token to eos_token")
81
 
82
+ model = AutoModelForCausalLM.from_pretrained(
83
+ "sweelol/lora-gemma3-270m-dolly",
84
+ torch_dtype=torch.bfloat16 if not USE_AMP else torch.float32,
85
+ attn_implementation='eager'
86
+ )
87
+ print(f"✅ Base model loaded (dtype: {model.dtype}).")
88
 
89
+
90
+ prompt = "Eiffel tower is located in"
91
+ model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
92
+
93
+ input_len = model_inputs["input_ids"].shape[-1]
94
+
95
+ with torch.inference_mode():
96
+ generation = model.generate(**model_inputs, max_new_tokens=50, do_sample=False)
97
+ generation = generation[0][input_len:]
98
+
99
+ decoded = tokenizer.decode(generation, skip_special_tokens=True)
100
+ print(decoded)
101
+ ```
102
 
103
 
104
  ## Evaluation Results