|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
import os |
|
from memory import update_memory, check_memory |
|
|
|
|
|
try: |
|
with open("persona.txt", "r", encoding="utf-8") as f: |
|
personality = f.read() |
|
except FileNotFoundError: |
|
personality = "You are a romantic AI chatbot designed to chat with Moin." |
|
|
|
|
|
model_name = "syedmoinms/MoinRomanticBot" |
|
|
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
try: |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HF_TOKEN) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
token=HF_TOKEN, |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
) |
|
except Exception as e: |
|
print(f"β Error loading model: {e}") |
|
exit() |
|
|
|
|
|
def chatbot(input_text): |
|
memory_response = check_memory(input_text) |
|
if memory_response: |
|
return memory_response |
|
|
|
prompt = f"{personality}\nMoin: {input_text}\nAI:" |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate(**inputs, max_length=150) |
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
update_memory(input_text, response) |
|
|
|
return response |
|
|
|
|
|
iface = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="MoinRomanticBot") |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch(server_name="0.0.0.0", server_port=7860) |