--- library_name: transformers base_model: syvai/tts-v1-pretrained tags: - axolotl - generated_from_trainer datasets: - syvai/zac-coral-tts - syvai/zac-dk-voice-pro - syvai/zac-dk-voice-single-speaker model-index: - name: tts-v0.3-finetuned results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0` ```yaml base_model: syvai/tts-v1-pretrained # Automatically upload checkpoint and final model to HF hub_model_id: syvai/tts-v0.3-finetuned plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true datasets: - path: syvai/zac-coral-tts type: - path: syvai/zac-dk-voice-pro type: - path: syvai/zac-dk-voice-single-speaker type: dataset_prepared_path: last_run_prepared val_set_size: 0.01 eval_sample_packing: False output_dir: ./outputs/finetuned sequence_len: 8196 sample_packing: true pad_to_sequence_len: true wandb_project: orph wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 2 num_epochs: 3 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 2e-5 bf16: auto tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false resume_from_checkpoint: logging_steps: 1 flash_attention: true warmup_steps: 3 evals_per_epoch: 5 saves_per_epoch: 5 weight_decay: 0.05 special_tokens: pad_token: ```

# tts-v0.3-finetuned This model is a fine-tuned version of [syvai/tts-v1-pretrained](https://huggingface.co/syvai/tts-v1-pretrained) on the syvai/zac-coral-tts, the syvai/zac-dk-voice-pro and the syvai/zac-dk-voice-single-speaker datasets. It achieves the following results on the evaluation set: - Loss: 4.3861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 3 - training_steps: 159 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0 | 0 | 4.9462 | | 4.6427 | 0.2042 | 11 | 4.6525 | | 4.5404 | 0.4084 | 22 | 4.5458 | | 4.4701 | 0.6125 | 33 | 4.4809 | | 4.4139 | 0.8167 | 44 | 4.4405 | | 4.4146 | 1.0186 | 55 | 4.4182 | | 4.4021 | 1.2227 | 66 | 4.4045 | | 4.3951 | 1.4269 | 77 | 4.3957 | | 4.3845 | 1.6311 | 88 | 4.3906 | | 4.3651 | 1.8353 | 99 | 4.3880 | | 4.3924 | 2.0371 | 110 | 4.3867 | | 4.3551 | 2.2413 | 121 | 4.3865 | | 4.3478 | 2.4455 | 132 | 4.3861 | | 4.3894 | 2.6497 | 143 | 4.3859 | | 4.3801 | 2.8538 | 154 | 4.3861 | ### Framework versions - Transformers 4.52.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1