--- library_name: transformers base_model: syvai/tts-v1-pretrained tags: - axolotl - generated_from_trainer datasets: - syvai/zac-coral-tts model-index: - name: tts-v1-finetuned results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0` ```yaml base_model: syvai/tts-v1-pretrained # Automatically upload checkpoint and final model to HF hub_model_id: syvai/tts-v1-finetuned plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true datasets: - path: syvai/zac-coral-tts type: dataset_prepared_path: last_run_prepared val_set_size: 0.01 eval_sample_packing: False output_dir: ./outputs/finetuned sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: orph wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 4 num_epochs: 3 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 2e-5 bf16: auto tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false resume_from_checkpoint: logging_steps: 1 flash_attention: true warmup_steps: 3 evals_per_epoch: 5 saves_per_epoch: 5 weight_decay: 0.05 special_tokens: pad_token: ```

# tts-v1-finetuned This model is a fine-tuned version of [syvai/tts-v1-pretrained](https://huggingface.co/syvai/tts-v1-pretrained) on the syvai/zac-coral-tts dataset. It achieves the following results on the evaluation set: - Loss: 4.2860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 3 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.9492 | 0.0246 | 1 | 4.8478 | | 4.7181 | 0.1969 | 8 | 4.5872 | | 4.5871 | 0.3938 | 16 | 4.4631 | | 4.557 | 0.5908 | 24 | 4.3972 | | 4.4965 | 0.7877 | 32 | 4.3521 | | 4.4697 | 0.9846 | 40 | 4.3258 | | 4.4525 | 1.1723 | 48 | 4.3083 | | 4.4301 | 1.3692 | 56 | 4.2980 | | 4.4459 | 1.5662 | 64 | 4.2915 | | 4.4382 | 1.7631 | 72 | 4.2893 | | 4.4315 | 1.96 | 80 | 4.2866 | | 4.4178 | 2.1477 | 88 | 4.2861 | | 4.4501 | 2.3446 | 96 | 4.2859 | | 4.4121 | 2.5415 | 104 | 4.2856 | | 4.4164 | 2.7385 | 112 | 4.2859 | | 4.4264 | 2.9354 | 120 | 4.2860 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1