t83714 commited on
Commit
cfccf81
·
1 Parent(s): 285aeef

update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -6
README.md CHANGED
@@ -23,8 +23,6 @@ model-index:
23
 
24
  This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) model. The fine-tuning was performed using Low-Rank Adaptation (LoRA) on the [LIMO dataset](https://huggingface.co/datasets/GAIR/LIMO) to enhance the model's reasoning capabilities, based on the work in the paper: [LIMO: Less is More for Reasoning](https://arxiv.org/pdf/2502.03387).
25
 
26
- This repo contains the LoRA adapter weights only. The merged model can be found from [here](https://huggingface.co/t83714/llama-3.1-8b-instruct-limo).
27
-
28
  ## Model description
29
 
30
  - **Base Model**: [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)
@@ -59,16 +57,16 @@ base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype="
59
  tokenizer = AutoTokenizer.from_pretrained(base_model_name)
60
 
61
  # Load the LoRA adapter
62
- adapter_path = "path_to_your_lora_adapter"
63
  model = PeftModel.from_pretrained(base_model, adapter_path)
64
 
65
- prompt = "Hello"
66
 
67
  # Tokenize the input
68
  inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
69
 
70
  # Generate the output
71
- output = merged_model.generate(**inputs, max_length=200)
72
  print(tokenizer.decode(output[0], skip_special_tokens=True))
73
  ```
74
 
@@ -79,7 +77,11 @@ from peft import PeftModel
79
  from transformers import AutoModelForCausalLM
80
 
81
  base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
82
- model = PeftModel.from_pretrained(base_model, "./")
 
 
 
 
83
  merged_model = model.merge_and_unload()
84
  merged_model.save_pretrained("./merged-model/")
85
  ```
 
23
 
24
  This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) model. The fine-tuning was performed using Low-Rank Adaptation (LoRA) on the [LIMO dataset](https://huggingface.co/datasets/GAIR/LIMO) to enhance the model's reasoning capabilities, based on the work in the paper: [LIMO: Less is More for Reasoning](https://arxiv.org/pdf/2502.03387).
25
 
 
 
26
  ## Model description
27
 
28
  - **Base Model**: [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)
 
57
  tokenizer = AutoTokenizer.from_pretrained(base_model_name)
58
 
59
  # Load the LoRA adapter
60
+ adapter_path = "t83714/llama-3.1-8b-instruct-limo-lora-adapter"
61
  model = PeftModel.from_pretrained(base_model, adapter_path)
62
 
63
+ prompt = "How much is (2+5)x5/7"
64
 
65
  # Tokenize the input
66
  inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
67
 
68
  # Generate the output
69
+ output = model.generate(**inputs, max_length=8000)
70
  print(tokenizer.decode(output[0], skip_special_tokens=True))
71
  ```
72
 
 
77
  from transformers import AutoModelForCausalLM
78
 
79
  base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
80
+
81
+ # Load the LoRA adapter
82
+ adapter_path = "t83714/llama-3.1-8b-instruct-limo-lora-adapter"
83
+ model = PeftModel.from_pretrained(base_model, adapter_path)
84
+
85
  merged_model = model.merge_and_unload()
86
  merged_model.save_pretrained("./merged-model/")
87
  ```