t83714 commited on
Commit
d2249f0
·
1 Parent(s): 041e322

update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -12
README.md CHANGED
@@ -1,26 +1,88 @@
1
  ---
2
  library_name: peft
3
- license: other
 
4
  base_model: meta-llama/Llama-3.1-8B-Instruct
 
 
5
  tags:
6
  - llama-factory
7
  - lora
8
  - generated_from_trainer
 
 
 
 
9
  model-index:
10
- - name: lora
11
  results: []
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # lora
18
 
19
- This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the limo dataset.
 
 
20
 
21
  ## Model description
22
 
23
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  ## Intended uses & limitations
26
 
@@ -44,14 +106,27 @@ The following hyperparameters were used during training:
44
  - lr_scheduler_type: cosine
45
  - num_epochs: 15
46
 
47
- ### Training results
48
-
49
-
50
-
51
  ### Framework versions
52
 
53
  - PEFT 0.12.0
54
  - Transformers 4.49.0
55
  - Pytorch 2.6.0+cu124
56
  - Datasets 3.3.2
57
- - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: peft
3
+ license: apache-2.0
4
+ pipeline_tag: text-generation
5
  base_model: meta-llama/Llama-3.1-8B-Instruct
6
+ datasets:
7
+ - GAIR/LIMO
8
  tags:
9
  - llama-factory
10
  - lora
11
  - generated_from_trainer
12
+ - chat
13
+ - Llama-3
14
+ - instruct
15
+ - finetune
16
  model-index:
17
+ - name: llama-3.1-8b-instruct-limo-lora
18
  results: []
19
  ---
20
 
 
 
21
 
22
+ # llama-3.1-8b-instruct-limo-lora
23
 
24
+ This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) model. The fine-tuning was performed using Low-Rank Adaptation (LoRA) on the [LIMO dataset](https://huggingface.co/datasets/GAIR/LIMO) to enhance the model's reasoning capabilities, based on the work in the paper: [LIMO: Less is More for Reasoning](https://arxiv.org/pdf/2502.03387).
25
+
26
+ This repo contains the LoRA adapter weights only. The merged model can be found from [here](https://huggingface.co/t83714/llama-3.1-8b-instruct-limo).
27
 
28
  ## Model description
29
 
30
+ - **Base Model**: [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)
31
+ - **Fine-Tuning Dataset**: [GAIR/LIMO](https://huggingface.co/datasets/GAIR/LIMO)
32
+ - **Fine-Tuning Method**: Low-Rank Adaptation (LoRA)
33
+ - **Library Used**: [peft](https://github.com/huggingface/peft)
34
+ - **License**: [Apache 2.0](LICENSE)
35
+
36
+ ## Usage
37
+
38
+ To utilize this model for text generation tasks, follow the steps below:
39
+
40
+ ### Installation
41
+
42
+ Ensure you have the necessary libraries installed:
43
+
44
+ ```bash
45
+ pip install torch transformers peft
46
+ ```
47
+
48
+ ### Generating Text
49
+
50
+ ```python
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer
52
+ from peft import PeftModel
53
+
54
+ # Load the base model
55
+ base_model_name = "meta-llama/Llama-3.1-8B-Instruct"
56
+ base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype="auto", device_map="auto")
57
+
58
+ # Load the tokenizer
59
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
60
+
61
+ # Load the LoRA adapter
62
+ adapter_path = "path_to_your_lora_adapter"
63
+ model = PeftModel.from_pretrained(base_model, adapter_path)
64
+
65
+ prompt = "Hello"
66
+
67
+ # Tokenize the input
68
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
69
+
70
+ # Generate the output
71
+ output = merged_model.generate(**inputs, max_length=200)
72
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
73
+ ```
74
+
75
+ ### Merge the adapter and export merged model
76
+
77
+ ```python
78
+ from peft import PeftModel
79
+ from transformers import AutoModelForCausalLM
80
+
81
+ base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
82
+ model = PeftModel.from_pretrained(base_model, "./")
83
+ merged_model = model.merge_and_unload()
84
+ merged_model.save_pretrained("./merged-model/")
85
+ ```
86
 
87
  ## Intended uses & limitations
88
 
 
106
  - lr_scheduler_type: cosine
107
  - num_epochs: 15
108
 
 
 
 
 
109
  ### Framework versions
110
 
111
  - PEFT 0.12.0
112
  - Transformers 4.49.0
113
  - Pytorch 2.6.0+cu124
114
  - Datasets 3.3.2
115
+ - Tokenizers 0.21.0
116
+
117
+
118
+ ## Acknowledgment
119
+
120
+ This model is trained based on the work of [Ye et al. (2025)](https://arxiv.org/abs/2502.03387). If you use this model, please also consider citing their paper:
121
+
122
+ ```bibtex
123
+ @misc{ye2025limoreasoning,
124
+ title={LIMO: Less is More for Reasoning},
125
+ author={Yixin Ye and Zhen Huang and Yang Xiao and Ethan Chern and Shijie Xia and Pengfei Liu},
126
+ year={2025},
127
+ eprint={2502.03387},
128
+ archivePrefix={arXiv},
129
+ primaryClass={cs.CL},
130
+ url={https://arxiv.org/abs/2502.03387},
131
+ }
132
+ ```