--- library_name: peft license: apache-2.0 pipeline_tag: text-generation base_model: meta-llama/Llama-3.1-8B-Instruct datasets: - GAIR/LIMO tags: - llama-factory - lora - generated_from_trainer - chat - Llama-3 - instruct - finetune model-index: - name: llama-3.1-8b-instruct-limo-lora results: [] --- # llama-3.1-8b-instruct-limo-lora This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) model. The fine-tuning was performed using Low-Rank Adaptation (LoRA) on the [LIMO dataset](https://huggingface.co/datasets/GAIR/LIMO) to enhance the model's reasoning capabilities, based on the work in the paper: [LIMO: Less is More for Reasoning](https://arxiv.org/pdf/2502.03387). ## Model description - **Base Model**: [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) - **Fine-Tuning Dataset**: [GAIR/LIMO](https://huggingface.co/datasets/GAIR/LIMO) - **Fine-Tuning Method**: Low-Rank Adaptation (LoRA) - **Library Used**: [peft](https://github.com/huggingface/peft) - **License**: [Apache 2.0](LICENSE) ## Usage To utilize this model for text generation tasks, follow the steps below: ### Installation Ensure you have the necessary libraries installed: ```bash pip install torch transformers peft ``` ### Generating Text ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load the base model base_model_name = "meta-llama/Llama-3.1-8B-Instruct" base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype="auto", device_map="auto") # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(base_model_name) # Load the LoRA adapter adapter_path = "t83714/llama-3.1-8b-instruct-limo-lora-adapter" model = PeftModel.from_pretrained(base_model, adapter_path) prompt = "How much is (2+5)x5/7" # Tokenize the input inputs = tokenizer(prompt, return_tensors="pt").to("cuda") # Generate the output output = model.generate(**inputs, max_length=8000) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` ### Merge the adapter and export merged model ```python from peft import PeftModel from transformers import AutoModelForCausalLM base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-Instruct") # Load the LoRA adapter adapter_path = "t83714/llama-3.1-8b-instruct-limo-lora-adapter" model = PeftModel.from_pretrained(base_model, adapter_path) merged_model = model.merge_and_unload() merged_model.save_pretrained("./merged-model/") ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 15 ### Framework versions - PEFT 0.12.0 - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0 ## Acknowledgment This model is trained based on the work of [Ye et al. (2025)](https://arxiv.org/abs/2502.03387). If you use this model, please also consider citing their paper: ```bibtex @misc{ye2025limoreasoning, title={LIMO: Less is More for Reasoning}, author={Yixin Ye and Zhen Huang and Yang Xiao and Ethan Chern and Shijie Xia and Pengfei Liu}, year={2025}, eprint={2502.03387}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2502.03387}, } ```