File size: 1,777 Bytes
57c904c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# Eagle-3 Speculator for Llama-3.3-70B-Instruct
This is an Eagle-3 speculator checkpoint converted to the [speculators](https://github.com/neuralmagic/speculators) format.
## Model Details
- **Base Model**: meta-llama/Llama-3.3-70B-Instruct
- **Speculator Type**: Eagle-3
- **Draft Vocabulary Size**: 32,000
- **Target Vocabulary Size**: 128,256
- **Architecture**: Single-layer transformer with vocabulary mapping
- **Target Model Hidden Size**: 8,192
- **Draft Model Hidden Size**: 6,144
## Key Features
- **Vocabulary Mapping**: Maps between draft (32K) and target (128K) vocabularies
- **Custom Attention**: Modified attention layer accepting 2×hidden_size input
- **Fusion Layer**: Processes 3 verifier layers from target model (3×8192 → 6144)
- **Optimized for 70B Models**: Specifically configured for Llama-3.3-70B architecture
## Usage
```python
from speculators.models.eagle3 import Eagle3Speculator, Eagle3SpeculatorConfig
from transformers import AutoModelForCausalLM
# Load verifier model
verifier = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.3-70B-Instruct")
# Load Eagle-3 speculator
speculator = Eagle3Speculator.from_pretrained(
"nm-testing/EAGLE3-LLaMA3.3-Instruct-70B-speculators",
verifier=verifier
)
```
## Configuration
This model uses the Eagle-3 architecture with:
- Hidden size: 6,144 (draft model)
- Target hidden size: 8,192 (70B Llama model)
- Attention heads: 48
- Key-value heads: 8
- Intermediate size: 16,384
- RMS norm epsilon: 1e-05
## Original Model
Converted from: [yuhuili/EAGLE3-LLaMA3.3-Instruct-70B](https://huggingface.co/yuhuili/EAGLE3-LLaMA3.3-Instruct-70B)
## Citation
Based on the Eagle-3 paper: https://arxiv.org/abs/2503.01840
## License
Please refer to the base Llama-3.3 model license. |