tahamajs commited on
Commit
2fa62d1
·
verified ·
1 Parent(s): c8b623d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -130
README.md CHANGED
@@ -1,202 +1,203 @@
1
  ---
2
  base_model: meta-llama/Llama-3.2-1B
3
  library_name: peft
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
 
 
18
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
96
 
97
- #### Speeds, Sizes, Times [optional]
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
 
 
 
 
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
 
 
120
 
121
- #### Metrics
 
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
124
 
125
- [More Information Needed]
 
 
 
 
 
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
132
 
 
 
133
 
 
 
134
 
135
- ## Model Examination [optional]
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
 
 
 
 
 
 
138
 
139
- [More Information Needed]
 
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
154
 
155
- ### Model Architecture and Objective
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
 
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
178
 
179
  **APA:**
180
 
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
200
- ### Framework versions
 
 
201
 
202
- - PEFT 0.14.0
 
1
  ---
2
  base_model: meta-llama/Llama-3.2-1B
3
  library_name: peft
4
+ license: mit
5
+ datasets:
6
+ - dair-ai/emotion
7
+ language:
8
+ - en
9
+ metrics:
10
+ - accuracy
11
  ---
12
 
 
13
 
14
+ # **Model Card for LLaMA-3-2-LoRA-EmotionTune**
15
 
16
+ ## **Model Details**
17
 
18
+ - **Model Description:**
19
+ LLaMA-3-2-LoRA-EmotionTune is a causal language model fine-tuned using Low-Rank Adaptation (LoRA) on a curated emotion dataset. The dataset consists of user-generated text annotated with emotion labels (sadness, joy, love, anger, fear, or surprise). This fine-tuning enables the model to perform efficient emotion classification while preserving the core strengths of the base LLaMA-3.2-1B-Instruct model.
20
 
21
+ - **Developed by:**
22
+ Taha Majlesi
23
 
24
+ - **Funded by (optional):**
25
+ tahamajs
26
 
27
+ - **Shared by (optional):**
28
+ tahamajs
29
 
30
+ - **Model type:**
31
+ Causal Language Model with LoRA-based fine-tuning for emotion classification
32
 
33
+ - **Language(s) (NLP):**
34
+ English
35
 
36
+ - **License:**
37
+ [Choose a license, e.g., Apache-2.0, MIT]
 
 
 
 
 
38
 
39
+ - **Finetuned from model (optional):**
40
+ LLaMA-3.2-1B-Instruct
41
 
42
+ - **Model Sources (optional):**
43
+ Original LLaMA model and publicly available emotion datasets
44
 
45
+ - **Repository:**
46
+ [https://huggingface.co/your-username/LLaMA-3-2-LoRA-EmotionTune](https://huggingface.co/your-username/LLaMA-3-2-LoRA-EmotionTune)
 
47
 
48
+ - **Paper (optional):**
49
+ For LoRA: *LoRA: Low-Rank Adaptation of Large Language Models* (Hu et al., 2021)
50
+ For LLaMA: [Reference paper details if available]
51
 
52
+ - **Demo (optional):**
53
+ [Link to interactive demo if available]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
+ ---
56
 
57
+ ## **Uses**
58
 
59
+ - **Direct Use:**
60
+ Emotion classification and sentiment analysis on short text inputs.
61
 
62
+ - **Downstream Use (optional):**
63
+ Can be integrated into affective computing systems, chatbots, content moderation pipelines, or any application requiring real-time sentiment detection.
64
 
65
+ - **Out-of-Scope Use:**
66
+ Not recommended for critical decision-making systems (e.g., mental health diagnostics) or for applications in languages other than English without further adaptation.
67
 
68
+ ---
69
 
70
+ ## **Bias, Risks, and Limitations**
71
 
72
+ - **Bias and Risks:**
73
+ The model may inherit biases present in the training data, potentially misclassifying nuanced emotions or reflecting cultural biases in emotional expression.
74
+
75
+ - **Limitations:**
76
+ - Limited to six predefined emotion categories.
77
+ - Performance may degrade for longer texts or in ambiguous contexts.
78
+ - The model is fine-tuned on a specific emotion dataset and may not generalize well across all domains.
79
 
80
+ ---
81
 
82
+ ## **Recommendations**
83
 
84
+ Users (both direct and downstream) should be aware of the model’s inherent biases and limitations. We recommend additional validation and fine-tuning before deploying this model in sensitive or high-stakes environments.
85
 
86
+ ---
87
 
88
+ ## **How to Get Started with the Model**
89
 
90
+ To load and use the model with Hugging Face Transformers and the PEFT library, try the following code snippet:
91
 
92
+ ```python
93
+ from transformers import AutoTokenizer, AutoModelForCausalLM
94
+ from peft import PeftModel
95
 
96
+ # Load base model
97
+ base_model = AutoModelForCausalLM.from_pretrained("meta-llama/LLaMA-3.2-1B-Instruct")
98
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/LLaMA-3.2-1B-Instruct")
99
 
100
+ # Load fine-tuned LoRA adapter
101
+ model = PeftModel.from_pretrained(base_model, "your-username/LLaMA-3-2-LoRA-EmotionTune")
102
 
103
+ # Example usage:
104
+ input_text = "I feel so happy today!"
105
+ inputs = tokenizer(input_text, return_tensors="pt")
106
+ outputs = model.generate(**inputs, max_new_tokens=50)
107
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
108
+ ```
109
 
110
+ > **Demo:** An interactive demo for LLaMA-3-2-LoRA-EmotionTune is available on Hugging Face Spaces at [https://huggingface.co/spaces/your-username/demo-name](https://huggingface.co/spaces/your-username/demo-name).
111
 
112
+ ---
113
 
114
+ ## **Training Details**
115
 
116
+ - **Training Data:**
117
+ A curated emotion dataset consisting of user-generated text annotated with emotion labels (sadness, joy, love, anger, fear, surprise).
118
 
119
+ - **Training Procedure:**
120
+ Fine-tuning was performed on the LLaMA-3.2-1B-Instruct model using the LoRA method, which adapts selected attention layers using a low-rank approach. This method leverages a small subset of trainable parameters while keeping the majority of the model frozen.
121
 
122
+ - **Preprocessing (optional):**
123
+ Text normalization, tokenization using the Hugging Face tokenizer, and train/validation splitting.
124
 
125
+ - **Training Hyperparameters:**
126
+ - **LoRA rank (r):** 16
127
+ - **lora_alpha:** 32
128
+ - **lora_dropout:** 0.1
129
+ - **Learning rate:** 2e-5
130
+ - **Batch size:** 32
131
+ - **Epochs:** Early stopping applied around epoch 10 to prevent overfitting.
132
 
133
+ - **Speeds, Sizes, Times (optional):**
134
+ Training conducted on an NVIDIA Tesla T4 GPU for approximately 10–12 hours.
135
 
136
+ ---
137
 
138
+ ## **Evaluation**
139
 
140
+ - **Testing Data:**
141
+ A held-out subset of the emotion-annotated dataset (e.g., 100 samples).
142
 
143
+ - **Factors:**
144
+ The evaluation focused on the model’s ability to classify emotions within short text outputs.
 
 
 
145
 
146
+ - **Metrics:**
147
+ Accuracy and Micro F1 score.
148
 
149
+ - **Results:**
150
+ The fine-tuned model achieved an accuracy and Micro F1 score of approximately 31% on short-text generation tasks (5–100 token outputs), outperforming the base and instruction-tuned models.
151
 
152
+ ---
153
 
 
154
 
155
+ ## **Technical Specifications **
156
 
157
+ - **Model Architecture and Objective:**
158
+ Based on LLaMA-3.2-1B-Instruct, the model is fine-tuned using LoRA to specifically classify text into emotion categories.
159
 
160
+ - **Compute Infrastructure:**
161
+ Hugging Face Transformers, PEFT library, and PyTorch.
162
 
163
+ - **Hardware:**
164
+ NVIDIA Tesla T4 or equivalent GPU.
165
 
166
+ - **Software:**
167
+ Python, PyTorch, Hugging Face Transformers, PEFT 0.14.0.
168
 
169
+ ---
170
 
171
+ ## **Citation**
172
 
173
  **BibTeX:**
174
 
175
+ ```bibtex
176
+ @inproceedings{hu2021lora,
177
+ title={LoRA: Low-Rank Adaptation of Large Language Models},
178
+ author={Hu, Edward J and others},
179
+ booktitle={Proceedings of ICLR},
180
+ year={2021}
181
+ }
182
+ ```
183
 
184
  **APA:**
185
 
186
+ Hu, E. J., et al. (2021). LoRA: Low-Rank Adaptation of Large Language Models. In *Proceedings of ICLR*.
 
 
187
 
188
+ ---
 
 
 
 
 
 
189
 
190
+ ## **Additional Information **
191
 
192
+ - **Model Card Authors:**
193
+ Taha Majlesi
194
 
195
+ - **Model Card Contact:**
196
197
 
198
+ - **Framework Versions:**
199
+ - PEFT: 0.14.0
200
+ - Transformers: [version]
201
+ - PyTorch: [version]
202
 
203
+ ---