tangled-alpha-0.9-core / scripts /prepare_core_datasets.py
mtasic85's picture
prepare datasets
734e414
from functools import partial
from transformers import AutoTokenizer
from litgpt.tokenizer import Tokenizer
from litdata import optimize, TokensLoader, StreamingDataset
from utils import tokenize_fn
from core_base_datasets import core_base_datasets
from core_instruct_datasets import core_instruct_datasets
tokenizer_path = '../tokenizer'
seqs = [
(0, 1073741824, 1025, 16000),
(1025, 2049, 2049, 8000),
(2049, 4097, 4097, 4000),
(4097, 8193, 8193, 2000),
(8193, 16385, 16385, 1000),
(16385, 32769, 32769, 500),
(32769, 65537, 65537, 250),
(65537, 131073, 131073, 125),
]
#
# optimize datasets
#
for i, (min_len, max_len, block_size, subchunk_size) in enumerate(seqs):
chunk_size = block_size * subchunk_size
output_dir = f'../core-data-{i}-{min_len}-{max_len}-{block_size}-{subchunk_size}'
outputs = optimize(
fn=partial(
tokenize_fn,
min_len=min_len,
max_len=max_len,
hf_tokenizer=AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True, use_fast=True),
tokenizer=Tokenizer(tokenizer_path),
),
inputs=core_base_datasets + core_instruct_datasets,
output_dir=output_dir,
chunk_size=chunk_size, # Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk.
num_workers=32,
reorder_files=False,
## This is important to inform LitData that we are encoding contiguous 1D array (tokens).
## LitData skips storing metadata for each sample e.g all the tokens are concatenated to form one large tensor.
# item_loader=TokensLoader(block_size=block_size),
)
#
# total number of chunks in datasets
#
for i, (min_len, max_len, block_size, subchunk_size) in enumerate(seqs):
chunk_size = block_size * subchunk_size
input_dir = f'../core-data-{i}-{min_len}-{max_len}-{block_size}-{subchunk_size}'
dataset = StreamingDataset(
input_dir=input_dir,
item_loader=TokensLoader(block_size=block_size),
)
print(f'{i=}, {min_len=}, {max_len=}, {block_size=}, {chunk_size=}, {len(dataset)=}, {len(dataset) * block_size=}')
total_tokens = len(dataset) * block_size
print(f'Total number of tokens in the optimized dataset {input_dir!r} is {total_tokens}')
print()