pretrain 1
Browse files- README.md +4 -0
- config-1.json +29 -0
- scripts/pretrain_core_model_0.yaml +0 -2
- scripts/pretrain_core_model_1.yaml +149 -0
README.md
CHANGED
@@ -210,3 +210,7 @@ CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable
|
|
210 |
| - leaderboard_musr_object_placements | 1|none | 0|acc_norm |↑ |0.2344|± |0.0265|
|
211 |
| - leaderboard_musr_team_allocation | 1|none | 0|acc_norm |↑ |0.3200|± |0.0296|
|
212 |
```
|
|
|
|
|
|
|
|
|
|
210 |
| - leaderboard_musr_object_placements | 1|none | 0|acc_norm |↑ |0.2344|± |0.0265|
|
211 |
| - leaderboard_musr_team_allocation | 1|none | 0|acc_norm |↑ |0.3200|± |0.0296|
|
212 |
```
|
213 |
+
|
214 |
+
```bash
|
215 |
+
litgpt convert_pretrained_checkpoint ../out/pretrain-core-0/final ../out/pretrain-core-0/checkpoint
|
216 |
+
```
|
config-1.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 1,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 512,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 2048,
|
14 |
+
"max_position_embeddings": 131072,
|
15 |
+
"mlp_bias": false,
|
16 |
+
"model_type": "llama",
|
17 |
+
"num_attention_heads": 8,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"num_key_value_heads": 8,
|
20 |
+
"pretraining_tp": 1,
|
21 |
+
"rms_norm_eps": 1e-05,
|
22 |
+
"rope_scaling": null,
|
23 |
+
"rope_theta": 16000.0,
|
24 |
+
"tie_word_embeddings": true,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.45.0.dev0",
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 131072
|
29 |
+
}
|
scripts/pretrain_core_model_0.yaml
CHANGED
@@ -61,7 +61,6 @@ train:
|
|
61 |
global_batch_size: 512
|
62 |
|
63 |
# Number of samples per data-parallel rank (type: int, default: 4)
|
64 |
-
# micro_batch_size: 2
|
65 |
micro_batch_size: 8
|
66 |
|
67 |
# Number of iterations with learning rate warmup active (type: int, default: 2000)
|
@@ -77,7 +76,6 @@ train:
|
|
77 |
max_steps:
|
78 |
|
79 |
# Limits the length of samples. Off by default (type: Optional[int], default: null)
|
80 |
-
# max_seq_length: 4096
|
81 |
max_seq_length: 1024
|
82 |
|
83 |
# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False)
|
|
|
61 |
global_batch_size: 512
|
62 |
|
63 |
# Number of samples per data-parallel rank (type: int, default: 4)
|
|
|
64 |
micro_batch_size: 8
|
65 |
|
66 |
# Number of iterations with learning rate warmup active (type: int, default: 2000)
|
|
|
76 |
max_steps:
|
77 |
|
78 |
# Limits the length of samples. Off by default (type: Optional[int], default: null)
|
|
|
79 |
max_seq_length: 1024
|
80 |
|
81 |
# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False)
|
scripts/pretrain_core_model_1.yaml
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# The name of the model to pretrain. Choose from names in ``litgpt.config``. Mutually exclusive with
|
2 |
+
# ``model_config``. (type: Optional[str], default: null)
|
3 |
+
model_name: 'tangled-alpha-0.9-core'
|
4 |
+
|
5 |
+
# A ``litgpt.Config`` object to define the model architecture. Mutually exclusive with
|
6 |
+
# ``model_config``. (type: Optional[Config], default: null)
|
7 |
+
model_config:
|
8 |
+
name: 'tangled-alpha-0.9-core'
|
9 |
+
block_size: 131072
|
10 |
+
vocab_size: 131072
|
11 |
+
padded_vocab_size: 131072
|
12 |
+
n_layer: 32
|
13 |
+
n_head: 8
|
14 |
+
n_embd: 512
|
15 |
+
n_query_groups: 8
|
16 |
+
rotary_percentage: 1.0
|
17 |
+
parallel_residual: False
|
18 |
+
bias: False
|
19 |
+
norm_class_name: "RMSNorm"
|
20 |
+
mlp_class_name: "LLaMAMLP"
|
21 |
+
intermediate_size: 2048 # n_embd * 4
|
22 |
+
norm_eps: 1e-5
|
23 |
+
rope_base: 16000 # https://arxiv.org/pdf/2405.14591
|
24 |
+
head_size: 128 # n_embd / n_head
|
25 |
+
|
26 |
+
# Directory in which to save checkpoints and logs. If running in a Lightning Studio Job, look for it in
|
27 |
+
# /teamspace/jobs/<job-name>/share. (type: <class 'Path'>, default: out/pretrain)
|
28 |
+
out_dir: "../out/pretrain-core-1/"
|
29 |
+
|
30 |
+
# The precision to use for pretraining. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
|
31 |
+
# precision: bf16-mixed
|
32 |
+
precision: bf16-true
|
33 |
+
|
34 |
+
# Optional path to a checkpoint directory to initialize the model from.
|
35 |
+
# Useful for continued pretraining. Mutually exclusive with ``resume``. (type: Optional[Path], default: null)
|
36 |
+
initial_checkpoint_dir: "../out/pretrain-core-0/checkpoint"
|
37 |
+
|
38 |
+
# Path to a checkpoint directory to resume from in case training was interrupted, or ``True`` to resume
|
39 |
+
# from the latest checkpoint in ``out_dir``. An error will be raised if no checkpoint is found. Passing
|
40 |
+
# ``'auto'`` will resume from the latest checkpoint but not error if no checkpoint exists.
|
41 |
+
# (type: Union[bool, Literal["auto"], Path], default: False)
|
42 |
+
resume: "auto"
|
43 |
+
|
44 |
+
# Data-related arguments. If not provided, the default is ``litgpt.data.TinyLlama``.
|
45 |
+
data:
|
46 |
+
class_path: LitData
|
47 |
+
|
48 |
+
init_args:
|
49 |
+
data_path: "../core-data-1-1025-2049-2049-8000/"
|
50 |
+
num_workers: 32
|
51 |
+
|
52 |
+
# Training-related arguments. See ``litgpt.args.TrainArgs`` for details
|
53 |
+
train:
|
54 |
+
# Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)
|
55 |
+
save_interval: 50
|
56 |
+
|
57 |
+
# Number of iterations between logging calls (type: int, default: 1)
|
58 |
+
log_interval: 1
|
59 |
+
|
60 |
+
# Number of samples between optimizer steps across data-parallel ranks (type: int, default: 512)
|
61 |
+
global_batch_size: 512
|
62 |
+
|
63 |
+
# Number of samples per data-parallel rank (type: int, default: 4)
|
64 |
+
micro_batch_size: 4
|
65 |
+
|
66 |
+
# Number of iterations with learning rate warmup active (type: int, default: 2000)
|
67 |
+
lr_warmup_steps: 0
|
68 |
+
|
69 |
+
# Number of epochs to train on (type: Optional[int], default: null)
|
70 |
+
epochs:
|
71 |
+
|
72 |
+
# Total number of tokens to train on (type: Optional[int], default: 3000000000000)
|
73 |
+
max_tokens: 634858062
|
74 |
+
|
75 |
+
# Limits the number of optimizer steps to run. (type: Optional[int], default: null)
|
76 |
+
max_steps:
|
77 |
+
|
78 |
+
# Limits the length of samples. Off by default (type: Optional[int], default: null)
|
79 |
+
max_seq_length: 2048
|
80 |
+
|
81 |
+
# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False)
|
82 |
+
tie_embeddings: true
|
83 |
+
|
84 |
+
# (type: Optional[float], default: 1.0)
|
85 |
+
max_norm: 1.0
|
86 |
+
|
87 |
+
# (type: float, default: 4e-05)
|
88 |
+
min_lr: 3e-6
|
89 |
+
|
90 |
+
# Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
|
91 |
+
eval:
|
92 |
+
# Number of optimizer steps between evaluation calls (type: int, default: 1000)
|
93 |
+
interval: 50
|
94 |
+
|
95 |
+
# Number of tokens to generate (type: Optional[int], default: null)
|
96 |
+
max_new_tokens:
|
97 |
+
|
98 |
+
# Number of iterations (type: int, default: 100)
|
99 |
+
max_iters: 100
|
100 |
+
|
101 |
+
# Whether to evaluate on the validation set at the beginning of the training
|
102 |
+
initial_validation: true
|
103 |
+
|
104 |
+
# Whether to evaluate on the validation set at the end the training
|
105 |
+
final_validation: true
|
106 |
+
|
107 |
+
# Optimizer-related arguments
|
108 |
+
|
109 |
+
# optimizer:
|
110 |
+
# class_path: torch.optim.AdamW
|
111 |
+
# # class_path: torchao.prototype.low_bit_optim.AdamW8bit
|
112 |
+
# # class_path: torchao.prototype.low_bit_optim.AdamW4bit
|
113 |
+
# # class_path: bitsandbytes.optim.AdamW8bit
|
114 |
+
# # class_path: bitsandbytes.optim.PagedAdamW8bit
|
115 |
+
# init_args:
|
116 |
+
# # (type: float, default: 0.001)
|
117 |
+
# lr: 3e-4
|
118 |
+
# # (type: float, default: 0.01)
|
119 |
+
# weight_decay: 0.01
|
120 |
+
# # (type: tuple, default: (0.9,0.999))
|
121 |
+
# betas:
|
122 |
+
# - 0.9
|
123 |
+
# - 0.999
|
124 |
+
|
125 |
+
optimizer:
|
126 |
+
class_path: sophia_opt.SophiaG
|
127 |
+
init_args:
|
128 |
+
lr: 3e-5
|
129 |
+
betas:
|
130 |
+
- 0.9
|
131 |
+
- 0.95
|
132 |
+
rho: 0.05
|
133 |
+
weight_decay: 0.1
|
134 |
+
|
135 |
+
# How many devices/GPUs to use. Uses all GPUs by default. (type: Union[int, str], default: auto)
|
136 |
+
devices: auto
|
137 |
+
|
138 |
+
# How many nodes to use. (type: int, default: 1)
|
139 |
+
num_nodes: 1
|
140 |
+
|
141 |
+
# Optional path to the tokenizer dir that was used for preprocessing the dataset. Only some data
|
142 |
+
# module require this. (type: Optional[Path], default: null)
|
143 |
+
tokenizer_dir: "../tokenizer"
|
144 |
+
|
145 |
+
# The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: tensorboard)
|
146 |
+
logger_name: "wandb"
|
147 |
+
|
148 |
+
# The random seed to use for reproducibility. (type: int, default: 42)
|
149 |
+
seed: 23
|