cpt core 4
Browse files
README.md
CHANGED
@@ -400,7 +400,12 @@ litgpt convert_pretrained_checkpoint ../out/pretrain-core-3/final ../out/pretrai
|
|
400 |
```
|
401 |
|
402 |
```bash
|
403 |
-
|
|
|
|
|
|
|
|
|
|
|
404 |
```
|
405 |
|
406 |
```
|
|
|
400 |
```
|
401 |
|
402 |
```bash
|
403 |
+
litgpt convert_from_litgpt ../out/pretrain-core-3/final ../out/pretrain-core-3/hf
|
404 |
+
cp ../config-3.json ../out/pretrain-core-3/hf/config.json
|
405 |
+
```
|
406 |
+
|
407 |
+
```bash
|
408 |
+
CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0
|
409 |
```
|
410 |
|
411 |
```
|
scripts/{pretrain_core_model_4.yaml → backup/pretrain_core_model_4.yaml}
RENAMED
File without changes
|
scripts/{backup/cpt_base_model.py → cpt_core_model_4.py}
RENAMED
@@ -1,12 +1,12 @@
|
|
1 |
from unsloth import FastLanguageModel
|
2 |
import torch
|
3 |
-
from transformers import AutoTokenizer
|
4 |
|
5 |
-
max_seq_length =
|
6 |
dtype = torch.bfloat16
|
7 |
load_in_4bit = True
|
8 |
-
model_name = '../out/pretrain-
|
9 |
-
output_dir = '../out/cpt-
|
10 |
|
11 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
12 |
model_name=model_name,
|
@@ -15,32 +15,33 @@ model, tokenizer = FastLanguageModel.from_pretrained(
|
|
15 |
load_in_4bit=load_in_4bit,
|
16 |
)
|
17 |
|
18 |
-
print('Ignore loaded tokenizer by FastLanguageModel.from_pretrained and using AutoTokenizer.from_pretrained')
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained('..', trust_remote_code=True, use_fast=True)
|
20 |
-
|
21 |
print(f'{model=}')
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
model = FastLanguageModel.get_peft_model(
|
25 |
model,
|
26 |
-
r=
|
27 |
-
target_modules=[
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
bias='none', # Supports any, but = "none" is optimized
|
35 |
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
36 |
-
use_gradient_checkpointing=
|
37 |
-
random_state=
|
38 |
-
use_rslora=True, # We support rank stabilized LoRA
|
39 |
-
loftq_config=None, # And LoftQ
|
40 |
)
|
41 |
|
42 |
print(f'{model=}')
|
43 |
|
|
|
44 |
from datasets import concatenate_datasets
|
45 |
from cpt_base_datasets import cpt_base_datasets
|
46 |
from cpt_instruct_datasets import cpt_instruct_datasets
|
@@ -60,8 +61,9 @@ for dataset_config in cpt_base_datasets:
|
|
60 |
|
61 |
final_dataset = concatenate_datasets(core_datasets)
|
62 |
print(f'{final_dataset=}')
|
|
|
63 |
|
64 |
-
|
65 |
from trl import SFTTrainer
|
66 |
from transformers import TrainingArguments
|
67 |
from unsloth import is_bfloat16_supported
|
@@ -99,3 +101,4 @@ trainer = UnslothTrainer(
|
|
99 |
)
|
100 |
|
101 |
trainer_stats = trainer.train()
|
|
|
|
1 |
from unsloth import FastLanguageModel
|
2 |
import torch
|
3 |
+
# from transformers import AutoTokenizer
|
4 |
|
5 |
+
max_seq_length = 16384
|
6 |
dtype = torch.bfloat16
|
7 |
load_in_4bit = True
|
8 |
+
model_name = '../out/pretrain-core-3/hf'
|
9 |
+
output_dir = '../out/cpt-core-4'
|
10 |
|
11 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
12 |
model_name=model_name,
|
|
|
15 |
load_in_4bit=load_in_4bit,
|
16 |
)
|
17 |
|
|
|
|
|
|
|
18 |
print(f'{model=}')
|
19 |
+
|
20 |
+
# print('Ignore loaded tokenizer by FastLanguageModel.from_pretrained and using AutoTokenizer.from_pretrained')
|
21 |
+
# tokenizer = AutoTokenizer.from_pretrained('..', trust_remote_code=True, use_fast=True)
|
22 |
+
|
23 |
+
# print(f'{tokenizer=}')
|
24 |
|
25 |
model = FastLanguageModel.get_peft_model(
|
26 |
model,
|
27 |
+
r = 256, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
28 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
29 |
+
"gate_proj",
|
30 |
+
"up_proj", "down_proj",
|
31 |
+
"embed_tokens", "lm_head",],
|
32 |
+
lora_alpha = 32,
|
33 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
34 |
+
bias = "none", # Supports any, but = "none" is optimized
|
|
|
35 |
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
36 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
37 |
+
random_state = 3407,
|
38 |
+
use_rslora = True, # We support rank stabilized LoRA
|
39 |
+
loftq_config = None, # And LoftQ
|
40 |
)
|
41 |
|
42 |
print(f'{model=}')
|
43 |
|
44 |
+
'''
|
45 |
from datasets import concatenate_datasets
|
46 |
from cpt_base_datasets import cpt_base_datasets
|
47 |
from cpt_instruct_datasets import cpt_instruct_datasets
|
|
|
61 |
|
62 |
final_dataset = concatenate_datasets(core_datasets)
|
63 |
print(f'{final_dataset=}')
|
64 |
+
'''
|
65 |
|
66 |
+
'''
|
67 |
from trl import SFTTrainer
|
68 |
from transformers import TrainingArguments
|
69 |
from unsloth import is_bfloat16_supported
|
|
|
101 |
)
|
102 |
|
103 |
trainer_stats = trainer.train()
|
104 |
+
'''
|