tasal9 commited on
Commit
843f365
·
verified ·
1 Parent(s): f02797c

Add demo.py

Browse files
Files changed (1) hide show
  1. demo.py +37 -37
demo.py CHANGED
@@ -1,37 +1,37 @@
1
- """
2
- ZamAI Embeddings Demo Application
3
- This script creates a web interface for querying documents using multilingual embeddings.
4
- """
5
- import gradio as gr
6
- from setup import setup_embedding_model
7
-
8
- # Set up the embedding model and query engine
9
- print("Setting up embedding model and vector database...")
10
- embedding_components = setup_embedding_model()
11
- query_engine = embedding_components["query_engine"]
12
-
13
- # Define the query function
14
- def answer_query(query):
15
- """Process a user query and return relevant information from indexed documents"""
16
- if not query.strip():
17
- return "Please enter a query."
18
-
19
- try:
20
- result = query_engine.query(query)
21
- return str(result)
22
- except Exception as e:
23
- return f"Error processing query: {str(e)}"
24
-
25
- # Create the Gradio interface
26
- iface = gr.Interface(
27
- fn=answer_query,
28
- inputs=gr.Textbox(lines=2, placeholder="Ask in any language (English, Pashto, etc.)"),
29
- outputs="text",
30
- title="ZamAI Multilingual Embeddings Demo",
31
- description="Ask questions about your documents in any language, including Pashto and English."
32
- )
33
-
34
- if __name__ == "__main__":
35
- print("Starting Gradio web interface...")
36
- iface.launch()
37
- print("Interface closed.")
 
1
+ """
2
+ ZamAI Embeddings Demo Application
3
+ This script creates a web interface for querying documents using multilingual embeddings.
4
+ """
5
+ import gradio as gr
6
+ from setup import setup_embedding_model
7
+
8
+ # Set up the embedding model and query engine
9
+ print("Setting up embedding model and vector database...")
10
+ embedding_components = setup_embedding_model()
11
+ query_engine = embedding_components["query_engine"]
12
+
13
+ # Define the query function
14
+ def answer_query(query):
15
+ """Process a user query and return relevant information from indexed documents"""
16
+ if not query.strip():
17
+ return "Please enter a query."
18
+
19
+ try:
20
+ result = query_engine.query(query)
21
+ return str(result)
22
+ except Exception as e:
23
+ return f"Error processing query: {str(e)}"
24
+
25
+ # Create the Gradio interface
26
+ iface = gr.Interface(
27
+ fn=answer_query,
28
+ inputs=gr.Textbox(lines=2, placeholder="Ask in any language (English, Pashto, etc.)"),
29
+ outputs="text",
30
+ title="ZamAI Multilingual Embeddings Demo",
31
+ description="Ask questions about your documents in any language, including Pashto and English."
32
+ )
33
+
34
+ if __name__ == "__main__":
35
+ print("Starting Gradio web interface...")
36
+ iface.launch()
37
+ print("Interface closed.")