Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -9,396 +9,85 @@ tags:
|
|
9 |
- pashto
|
10 |
- lightweight
|
11 |
- language-model
|
12 |
-
- zamai
|
13 |
base_model: bigscience/bloomz-560m
|
14 |
pipeline_tag: text-generation
|
15 |
datasets:
|
16 |
- tasal9/Pashto-Dataset-Creating-Dataset
|
17 |
-
widget:
|
18 |
-
- text: "Hello, how can I help you today?"
|
19 |
-
example_title: "English Greeting"
|
20 |
-
- text: "Ψ³ΩΨ§Ω
ΩΨ±ΩΨ±ΩΨ Ϊ
ΩΪ«Ω ΫΨ§Ψ³ΨͺΨ"
|
21 |
-
example_title: "Pashto Greeting"
|
22 |
-
model-index:
|
23 |
-
- name: pashto-base-bloom
|
24 |
-
results:
|
25 |
-
- task:
|
26 |
-
type: text-generation
|
27 |
-
name: Text Generation
|
28 |
-
dataset:
|
29 |
-
type: custom
|
30 |
-
name: Pashto Educational Dataset
|
31 |
-
metrics:
|
32 |
-
- type: accuracy
|
33 |
-
value: 92.5
|
34 |
-
name: Overall Accuracy
|
35 |
-
- type: bleu
|
36 |
-
value: 0.85
|
37 |
-
name: BLEU Score
|
38 |
---
|
39 |
|
40 |
# pashto-base-bloom
|
41 |
|
42 |
-
|
43 |
-
<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png" alt="Hugging Face" width="100"/>
|
44 |
-
<h2>π Part of ZamAI Pro Models Strategy</h2>
|
45 |
-
<p><strong>BLOOM-based model fine-tuned for Pashto language tasks</strong></p>
|
46 |
-
</div>
|
47 |
|
48 |
## π Model Overview
|
49 |
|
50 |
-
|
51 |
|
52 |
-
###
|
53 |
-
|
54 |
-
-
|
55 |
-
- π **Multilingual Support**: Optimized for Pashto (ps) and English (en)
|
56 |
- β‘ **High Performance**: Optimized for production deployment
|
57 |
-
- π **Enterprise-
|
58 |
-
- π± **Production-Ready**: Tested and deployed in real applications
|
59 |
-
- π **Educational Focus**: Designed for learning and cultural preservation
|
60 |
-
|
61 |
-
## π― Use Cases & Applications
|
62 |
-
|
63 |
-
This model excels in the following scenarios:
|
64 |
-
|
65 |
-
- **Lightweight Applications**: Advanced text generation capabilities
|
66 |
-
- **Mobile Deployment**: Advanced text generation capabilities
|
67 |
-
- **Quick Prototyping**: Advanced text generation capabilities
|
68 |
-
- **Educational Tools**: Advanced text generation capabilities
|
69 |
-
- **Resource-Constrained Environments**: Advanced text generation capabilities
|
70 |
-
|
71 |
-
### π Real-World Applications
|
72 |
|
73 |
-
|
74 |
-
- **π Business Automation**: Document processing, form analysis, and content generation
|
75 |
-
- **π€ Voice Applications**: Natural language understanding for voice assistants
|
76 |
-
- **ποΈ Cultural Preservation**: Supporting Pashto language technology and digital preservation
|
77 |
-
- **π Translation Services**: Cross-lingual communication and content localization
|
78 |
-
- **π€ Chatbot Development**: Building intelligent conversational agents
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
### π§ Installation
|
83 |
-
|
84 |
-
```bash
|
85 |
-
pip install transformers torch huggingface_hub
|
86 |
-
```
|
87 |
-
|
88 |
-
### π Basic Usage
|
89 |
|
90 |
```python
|
91 |
-
from transformers import AutoTokenizer,
|
92 |
-
from huggingface_hub import InferenceClient
|
93 |
|
94 |
-
# Method 1: Using Transformers (Local)
|
95 |
tokenizer = AutoTokenizer.from_pretrained("tasal9/pashto-base-bloom")
|
96 |
-
model =
|
97 |
|
98 |
-
# Example
|
99 |
text = "Your input text here"
|
100 |
inputs = tokenizer(text, return_tensors="pt")
|
101 |
-
|
102 |
-
# Generate response
|
103 |
-
with torch.no_grad():
|
104 |
-
outputs = model.generate(
|
105 |
-
**inputs,
|
106 |
-
max_new_tokens=200,
|
107 |
-
temperature=0.7,
|
108 |
-
top_p=0.9,
|
109 |
-
pad_token_id=tokenizer.eos_token_id
|
110 |
-
)
|
111 |
-
|
112 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
113 |
-
print(response)
|
114 |
```
|
115 |
|
116 |
-
###
|
117 |
|
118 |
```python
|
119 |
from huggingface_hub import InferenceClient
|
120 |
|
121 |
-
# Initialize client
|
122 |
client = InferenceClient(token="your_hf_token")
|
123 |
|
124 |
-
# Generate text
|
125 |
response = client.text_generation(
|
126 |
model="tasal9/pashto-base-bloom",
|
127 |
prompt="Your prompt here",
|
128 |
-
max_new_tokens=200
|
129 |
-
temperature=0.7,
|
130 |
-
top_p=0.9
|
131 |
-
)
|
132 |
-
|
133 |
-
print(response)
|
134 |
-
```
|
135 |
-
|
136 |
-
### π― Specialized Usage Examples
|
137 |
-
|
138 |
-
#### English Query
|
139 |
-
```python
|
140 |
-
prompt = "Explain the importance of renewable energy in simple terms:"
|
141 |
-
response = client.text_generation(
|
142 |
-
model="tasal9/pashto-base-bloom",
|
143 |
-
prompt=prompt,
|
144 |
-
max_new_tokens=250,
|
145 |
-
temperature=0.7
|
146 |
-
)
|
147 |
-
```
|
148 |
-
|
149 |
-
#### Pashto Query
|
150 |
-
```python
|
151 |
-
prompt = "Ψ― Ψ¨Ψ΄ΩΎΪ ΩΎΩΪΨͺΩΩ: Ψ― Ϊ©Ψ±ΪΩΫ ΩΨ±Ψ§ΩΫ Ψ― Ϊ©Ψ±Ϊ©ΩΌΨ±ΩΩΩ ΩΎΩ Ψ§ΪΩ ΨͺΨ§Ψ³Ω Ϊ
Ω ΩΎΩΩ ΫΨ§Ψ³ΨͺΨ"
|
152 |
-
response = client.text_generation(
|
153 |
-
model="tasal9/pashto-base-bloom",
|
154 |
-
prompt=prompt,
|
155 |
-
max_new_tokens=250,
|
156 |
-
temperature=0.7
|
157 |
-
)
|
158 |
-
```
|
159 |
-
|
160 |
-
## π§ Technical Specifications
|
161 |
-
|
162 |
-
| Specification | Details |
|
163 |
-
|---------------|---------|
|
164 |
-
| **Model Type** | Text Generation |
|
165 |
-
| **Base Model** | bigscience/bloomz-560m |
|
166 |
-
| **Languages** | Pashto (ps), English (en) |
|
167 |
-
| **License** | MIT |
|
168 |
-
| **Context Length** | Variable (depends on base model) |
|
169 |
-
| **Parameters** | Optimized for efficiency |
|
170 |
-
| **Framework** | PyTorch, Transformers |
|
171 |
-
| **Deployment** | HF Inference API, Local, Docker |
|
172 |
-
|
173 |
-
## π Performance Metrics
|
174 |
-
|
175 |
-
| Metric | Score | Description |
|
176 |
-
|--------|-------|-------------|
|
177 |
-
| **Overall Accuracy** | 92.5% | Performance on Pashto evaluation dataset |
|
178 |
-
| **BLEU Score** | 0.85 | Translation and generation quality |
|
179 |
-
| **Cultural Relevance** | 95% | Appropriateness for Pashto cultural context |
|
180 |
-
| **Response Time** | <200ms | Average inference time via API |
|
181 |
-
| **Multilingual Score** | 89% | Cross-lingual understanding capability |
|
182 |
-
| **Coherence Score** | 91% | Logical flow and consistency |
|
183 |
-
|
184 |
-
## π Interactive Demo
|
185 |
-
|
186 |
-
Try the model instantly with our Gradio demos:
|
187 |
-
|
188 |
-
### π― Live Demos
|
189 |
-
- **[Complete Suite Demo](https://huggingface.co/spaces/tasal9/zamai-complete-suite)** - All models in one interface
|
190 |
-
- **[Individual Model Demo](https://huggingface.co/spaces/tasal9/pashto-base-bloom)** - Focused interface for this model
|
191 |
-
|
192 |
-
### π API Endpoints
|
193 |
-
- **Inference API**: `https://api-inference.huggingface.co/models/tasal9/pashto-base-bloom`
|
194 |
-
- **Model Hub**: `https://huggingface.co/tasal9/pashto-base-bloom`
|
195 |
-
|
196 |
-
## π Deployment Options
|
197 |
-
|
198 |
-
### 1. π Hugging Face Inference API (Recommended)
|
199 |
-
```python
|
200 |
-
from huggingface_hub import InferenceClient
|
201 |
-
client = InferenceClient(token="your_token")
|
202 |
-
response = client.text_generation(model="tasal9/pashto-base-bloom", prompt="Your prompt")
|
203 |
-
```
|
204 |
-
|
205 |
-
### 2. π₯οΈ Local Deployment
|
206 |
-
```bash
|
207 |
-
# Clone the model
|
208 |
-
git clone https://huggingface.co/tasal9/pashto-base-bloom
|
209 |
-
cd pashto-base-bloom
|
210 |
-
|
211 |
-
# Run with Python
|
212 |
-
python -c "
|
213 |
-
from transformers import pipeline
|
214 |
-
pipe = pipeline('text-generation', model='.')
|
215 |
-
print(pipe('Your prompt here'))
|
216 |
-
"
|
217 |
-
```
|
218 |
-
|
219 |
-
### 3. π³ Docker Deployment
|
220 |
-
```dockerfile
|
221 |
-
FROM python:3.9-slim
|
222 |
-
|
223 |
-
RUN pip install transformers torch
|
224 |
-
|
225 |
-
COPY . /app
|
226 |
-
WORKDIR /app
|
227 |
-
|
228 |
-
CMD ["python", "app.py"]
|
229 |
-
```
|
230 |
-
|
231 |
-
### 4. βοΈ Cloud Deployment
|
232 |
-
Compatible with major cloud platforms:
|
233 |
-
- **AWS SageMaker**
|
234 |
-
- **Google Cloud AI Platform**
|
235 |
-
- **Azure Machine Learning**
|
236 |
-
- **Hugging Face Spaces**
|
237 |
-
|
238 |
-
## π Model Training & Fine-tuning
|
239 |
-
|
240 |
-
### π― Training Data
|
241 |
-
- **Primary Dataset**: Custom Pashto educational content
|
242 |
-
- **Secondary Data**: Multilingual parallel corpora
|
243 |
-
- **Domain Focus**: Educational, cultural, and conversational content
|
244 |
-
- **Quality Assurance**: Human-reviewed and culturally validated
|
245 |
-
|
246 |
-
### π§ Fine-tuning Process
|
247 |
-
```python
|
248 |
-
from transformers import TrainingArguments, Trainer
|
249 |
-
|
250 |
-
# Example fine-tuning setup
|
251 |
-
training_args = TrainingArguments(
|
252 |
-
output_dir="./results",
|
253 |
-
num_train_epochs=3,
|
254 |
-
per_device_train_batch_size=4,
|
255 |
-
per_device_eval_batch_size=4,
|
256 |
-
warmup_steps=500,
|
257 |
-
weight_decay=0.01,
|
258 |
-
logging_dir="./logs",
|
259 |
-
)
|
260 |
-
|
261 |
-
# Initialize trainer
|
262 |
-
trainer = Trainer(
|
263 |
-
model=model,
|
264 |
-
args=training_args,
|
265 |
-
train_dataset=train_dataset,
|
266 |
-
eval_dataset=eval_dataset,
|
267 |
)
|
268 |
-
|
269 |
-
# Start training
|
270 |
-
trainer.train()
|
271 |
```
|
272 |
|
273 |
-
##
|
274 |
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
277 |
|
278 |
-
|
279 |
-
2. **Model Improvements**: Suggest architectural enhancements or optimizations
|
280 |
-
3. **Use Case Development**: Build applications and share success stories
|
281 |
-
4. **Bug Reports**: Help us identify and fix issues
|
282 |
-
5. **Documentation**: Improve guides and examples
|
283 |
|
284 |
-
|
285 |
-
- **Educational
|
286 |
-
- **Business
|
287 |
-
- **
|
288 |
-
- **
|
289 |
|
290 |
-
|
291 |
-
- **Downloads**: Track model adoption
|
292 |
-
- **Community Feedback**: User reviews and ratings
|
293 |
-
- **Performance Reports**: Real-world usage statistics
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
### π€ Other ZamAI Models
|
298 |
-
- [**ZamAI-Mistral-7B-Pashto**](https://huggingface.co/tasal9/ZamAI-Mistral-7B-Pashto) - Educational tutor
|
299 |
-
- [**ZamAI-Phi-3-Mini-Pashto**](https://huggingface.co/tasal9/ZamAI-Phi-3-Mini-Pashto) - Business assistant
|
300 |
-
- [**ZamAI-Whisper-v3-Pashto**](https://huggingface.co/tasal9/ZamAI-Whisper-v3-Pashto) - Speech recognition
|
301 |
-
- [**Multilingual-ZamAI-Embeddings**](https://huggingface.co/tasal9/Multilingual-ZamAI-Embeddings) - Text embeddings
|
302 |
-
- [**ZamAI-LLaMA3-Pashto**](https://huggingface.co/tasal9/ZamAI-LLaMA3-Pashto) - Advanced chat
|
303 |
-
- [**pashto-base-bloom**](https://huggingface.co/tasal9/pashto-base-bloom) - Lightweight model
|
304 |
-
|
305 |
-
### π Datasets
|
306 |
-
- [**Pashto-Dataset-Creating-Dataset**](https://huggingface.co/datasets/tasal9/Pashto-Dataset-Creating-Dataset) - Training data
|
307 |
-
|
308 |
-
### π Platform Links
|
309 |
-
- **Organization**: [tasal9](https://huggingface.co/tasal9)
|
310 |
-
- **Complete Demo**: [ZamAI Suite](https://huggingface.co/spaces/tasal9/zamai-complete-suite)
|
311 |
-
|
312 |
-
## π Support & Contact
|
313 |
-
|
314 |
-
### π Getting Help
|
315 |
- π§ **Email**: [email protected]
|
316 |
- π **Website**: [zamai.ai](https://zamai.ai)
|
317 |
-
-
|
318 |
-
- π¬ **Community Forum**: [community.zamai.ai](https://community.zamai.ai)
|
319 |
-
- π **GitHub**: [github.com/zamai-ai](https://github.com/zamai-ai)
|
320 |
|
321 |
-
|
322 |
-
For enterprise deployments, custom fine-tuning, or integration assistance:
|
323 |
-
- π§ **Enterprise**: [email protected]
|
324 |
-
- π **Phone**: +1-XXX-XXX-XXXX
|
325 |
-
- πΌ **Consulting**: [zamai.ai/consulting](https://zamai.ai/consulting)
|
326 |
|
327 |
-
|
328 |
-
|
329 |
-
If you use this model in your research or applications, please cite:
|
330 |
-
|
331 |
-
```bibtex
|
332 |
-
@misc{zamai-pashto-base-bloom-2024,
|
333 |
-
title={pashto-base-bloom: BLOOM-based model fine-tuned for Pashto language tasks},
|
334 |
-
author={ZamAI Team},
|
335 |
-
year={2024},
|
336 |
-
url={https://huggingface.co/tasal9/pashto-base-bloom},
|
337 |
-
note={ZamAI Pro Models Strategy - Multilingual AI Platform},
|
338 |
-
publisher={Hugging Face}
|
339 |
-
}
|
340 |
-
```
|
341 |
-
|
342 |
-
### π Academic Papers
|
343 |
-
```bibtex
|
344 |
-
@article{zamai2024multilingual,
|
345 |
-
title={Advancing Multilingual AI: The ZamAI Pro Models Strategy for Pashto Language Technology},
|
346 |
-
author={ZamAI Research Team},
|
347 |
-
journal={Journal of Multilingual AI},
|
348 |
-
year={2024},
|
349 |
-
volume={1},
|
350 |
-
pages={1--15}
|
351 |
-
}
|
352 |
-
```
|
353 |
-
|
354 |
-
## π License & Terms
|
355 |
-
|
356 |
-
### π License
|
357 |
-
This model is licensed under the **MIT License**:
|
358 |
-
|
359 |
-
- β
**Commercial Use**: Allowed for business applications
|
360 |
-
- β
**Modification**: Can be modified and improved
|
361 |
-
- β
**Distribution**: Can be redistributed
|
362 |
-
- β
**Private Use**: Allowed for personal projects
|
363 |
-
- β οΈ **Attribution Required**: Credit must be given to ZamAI
|
364 |
-
|
365 |
-
### π Terms of Use
|
366 |
-
1. **Responsible AI**: Use ethically and responsibly
|
367 |
-
2. **No Harmful Content**: Do not generate harmful or offensive content
|
368 |
-
3. **Privacy**: Respect user privacy and data protection laws
|
369 |
-
4. **Cultural Sensitivity**: Be respectful of Pashto culture and language
|
370 |
-
5. **Compliance**: Follow local laws and regulations
|
371 |
-
|
372 |
-
### π‘οΈ Limitations & Disclaimers
|
373 |
-
- Model outputs should be reviewed for accuracy
|
374 |
-
- Not suitable for critical decision-making without human oversight
|
375 |
-
- May have biases inherited from training data
|
376 |
-
- Performance may vary across different domains
|
377 |
-
|
378 |
-
## π Changelog & Updates
|
379 |
-
|
380 |
-
| Version | Date | Changes |
|
381 |
-
|---------|------|---------|
|
382 |
-
| **v1.0** | 2025-07-05 | Initial release with enhanced Pashto support |
|
383 |
-
| **v1.1** | TBD | Performance optimizations and bug fixes |
|
384 |
-
| **v2.0** | TBD | Extended language support and new features |
|
385 |
-
|
386 |
-
### π Update Schedule
|
387 |
-
- **Monthly**: Performance monitoring and minor improvements
|
388 |
-
- **Quarterly**: Feature updates and enhancements
|
389 |
-
- **Annually**: Major version releases with significant improvements
|
390 |
|
391 |
---
|
392 |
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
<p>
|
397 |
-
<a href="https://zamai.ai">π Website</a> β’
|
398 |
-
<a href="https://huggingface.co/tasal9">π€ Models</a> β’
|
399 |
-
<a href="https://community.zamai.ai">π¬ Community</a> β’
|
400 |
-
<a href="mailto:[email protected]">π§ Support</a>
|
401 |
-
</p>
|
402 |
-
<p><em>Last Updated: 2025-07-05 21:15:52 UTC</em></p>
|
403 |
-
<p><em>Model Card Version: 2.0</em></p>
|
404 |
-
</div>
|
|
|
9 |
- pashto
|
10 |
- lightweight
|
11 |
- language-model
|
|
|
12 |
base_model: bigscience/bloomz-560m
|
13 |
pipeline_tag: text-generation
|
14 |
datasets:
|
15 |
- tasal9/Pashto-Dataset-Creating-Dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
---
|
17 |
|
18 |
# pashto-base-bloom
|
19 |
|
20 |
+
BLOOM-based model fine-tuned for Pashto language tasks
|
|
|
|
|
|
|
|
|
21 |
|
22 |
## π Model Overview
|
23 |
|
24 |
+
This model is part of the **ZamAI Pro Models Strategy** - a comprehensive AI platform designed for multilingual applications with specialized focus on Pashto language support.
|
25 |
|
26 |
+
### Key Features
|
27 |
+
- π§ **Advanced AI**: Based on bigscience/bloomz-560m architecture
|
28 |
+
- π **Multilingual**: Optimized for Pashto and English
|
|
|
29 |
- β‘ **High Performance**: Optimized for production deployment
|
30 |
+
- π **Secure**: Enterprise-grade security and privacy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
## π Usage
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
### Basic Usage with Transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
```python
|
37 |
+
from transformers import AutoTokenizer, AutoModel
|
|
|
38 |
|
|
|
39 |
tokenizer = AutoTokenizer.from_pretrained("tasal9/pashto-base-bloom")
|
40 |
+
model = AutoModel.from_pretrained("tasal9/pashto-base-bloom")
|
41 |
|
42 |
+
# Example usage
|
43 |
text = "Your input text here"
|
44 |
inputs = tokenizer(text, return_tensors="pt")
|
45 |
+
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
```
|
47 |
|
48 |
+
### Usage with Hugging Face Inference API
|
49 |
|
50 |
```python
|
51 |
from huggingface_hub import InferenceClient
|
52 |
|
|
|
53 |
client = InferenceClient(token="your_hf_token")
|
54 |
|
|
|
55 |
response = client.text_generation(
|
56 |
model="tasal9/pashto-base-bloom",
|
57 |
prompt="Your prompt here",
|
58 |
+
max_new_tokens=200
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
)
|
|
|
|
|
|
|
60 |
```
|
61 |
|
62 |
+
## π§ Technical Details
|
63 |
|
64 |
+
- **Model Type**: text-generation
|
65 |
+
- **Base Model**: bigscience/bloomz-560m
|
66 |
+
- **Languages**: Pashto (ps), English (en)
|
67 |
+
- **License**: MIT
|
68 |
+
- **Training**: Fine-tuned on Pashto educational and cultural content
|
69 |
|
70 |
+
## π Applications
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
This model powers:
|
73 |
+
- **ZamAI Educational Platform**: Pashto language tutoring
|
74 |
+
- **Business Automation**: Document processing and analysis
|
75 |
+
- **Voice Assistants**: Natural language understanding
|
76 |
+
- **Cultural Preservation**: Supporting Pashto language technology
|
77 |
|
78 |
+
## π Support
|
|
|
|
|
|
|
79 |
|
80 |
+
For support and integration assistance:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
- π§ **Email**: [email protected]
|
82 |
- π **Website**: [zamai.ai](https://zamai.ai)
|
83 |
+
- π¬ **Community**: [ZamAI Community](https://community.zamai.ai)
|
|
|
|
|
84 |
|
85 |
+
## π License
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
Licensed under the MIT License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
---
|
90 |
|
91 |
+
**Part of the ZamAI Pro Models Strategy - Transforming AI for Multilingual Applications** π
|
92 |
+
|
93 |
+
*Updated: 2025-07-05 21:29:16 UTC*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|