File size: 2,083 Bytes
d171b2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-0.5B-Instruct
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: toxicity-scorer-qwen-it
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# toxicity-scorer-qwen-it
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1670
- F1: 0.9371
- Accuracy: 0.9379
- Precision: 0.9365
- Recall: 0.9379
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:|
| No log | 0 | 0 | 1.4998 | 0.6765 | 0.6206 | 0.7541 | 0.6206 |
| 0.1418 | 1.0 | 8816 | 0.1423 | 0.9379 | 0.9400 | 0.9372 | 0.9400 |
| 0.0994 | 2.0 | 17632 | 0.1455 | 0.9395 | 0.9405 | 0.9389 | 0.9405 |
| 0.0875 | 3.0 | 26448 | 0.1670 | 0.9371 | 0.9379 | 0.9365 | 0.9379 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3
|