--- library_name: transformers license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-135M tags: - generated_from_trainer metrics: - f1 - accuracy - precision - recall model-index: - name: toxicity-scorer-smollm2-135m-freeze results: [] --- # toxicity-scorer-smollm2-135m-freeze This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3011 - F1: 0.8565 - Accuracy: 0.8807 - Precision: 0.8558 - Recall: 0.8807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 36 - eval_batch_size: 36 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 288 - total_eval_batch_size: 288 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |:-------------:|:------:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:| | No log | 0 | 0 | 1.2430 | 0.5996 | 0.5195 | 0.7569 | 0.5195 | | 0.3157 | 1.2762 | 5000 | 0.3011 | 0.8562 | 0.8806 | 0.8556 | 0.8806 | | 0.309 | 2.5523 | 10000 | 0.3011 | 0.8565 | 0.8807 | 0.8558 | 0.8807 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3