rapala-marttiini-simpletuner-lora
This is a LyCORIS adapter derived from stabilityai/stable-diffusion-3.5-large.
The main validation prompt used during training was:
Marttiini Hirvi Black knife, black handle with bronze ends, dark blade with visible engraving, sheath black leather with J. Marttiini Finland logo stamped at the top and moose engraving below it, bronze-colored blade engraving at the bottom of the sheath, next to the knife, knife resting on moss and lichen, close-up, blurry background
Validation settings
- CFG:
7.0 - CFG Rescale:
0.7 - Steps:
20 - Sampler:
FlowMatchEulerDiscreteScheduler - Seed:
42 - Resolution:
1024x1024 - Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:

- Prompt
- unconditional (blank prompt)
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- Marttiini Hirvi Black knife, black handle with bronze ends, dark blade with visible engraving, sheath black leather with J. Marttiini Finland logo stamped at the top and moose engraving below it, bronze-colored blade engraving at the bottom of the sheath, next to the knife, knife resting on moss and lichen, close-up, blurry background
- Negative Prompt
- blurry, cropped, ugly
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 0
- Training steps: 25000
- Learning rate: 0.0005
- Learning rate schedule: cosine
- Warmup steps: 500
- Max grad value: 2.0
- Effective batch size: 12
- Micro-batch size: 12
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow_matching (extra parameters=['shift=3'])
- Optimizer: prodigy
- Trainable parameter precision: Pure BF16
- Base model precision:
int8-quanto - Caption dropout probability: 0.05%
LyCORIS Config:
{
"algo": "lora",
"multiplier": 1.0,
"linear_dim": 256,
"linear_alpha": 256,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 256
},
"FeedForward": {
"factor": 256
}
}
}
}
Datasets
rapala-marttiini-dataset-images
- Repeats: 5
- Total number of images: 128106
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'stabilityai/stable-diffusion-3.5-large'
adapter_repo_id = 'tekoaly4/rapala-marttiini-simpletuner-lora'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "Marttiini Hirvi Black knife, black handle with bronze ends, dark blade with visible engraving, sheath black leather with J. Marttiini Finland logo stamped at the top and moose engraving below it, bronze-colored blade engraving at the bottom of the sheath, next to the knife, knife resting on moss and lichen, close-up, blurry background"
negative_prompt = 'blurry, cropped, ugly'
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=7.0,
).images[0]
model_output.save("output.png", format="PNG")
- Downloads last month
- 168
Model tree for tekoaly4/rapala-marttiini-simpletuner-lora
Base model
stabilityai/stable-diffusion-3.5-large