File size: 6,498 Bytes
1827e13 dce1ff9 1827e13 c2f1aa1 8b79c28 1827e13 c2f1aa1 1827e13 c2f1aa1 1827e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
license: cc-by-nc-4.0
datasets:
- argilla/dpo-mix-7k
- nvidia/HelpSteer
- jondurbin/airoboros-3.2
- hkust-nlp/deita-10k-v0
- LDJnr/Capybara
- HPAI-BSC/CareQA
- GBaker/MedQA-USMLE-4-options
- lukaemon/mmlu
- bigbio/pubmed_qa
- openlifescienceai/medmcqa
- bigbio/med_qa
- HPAI-BSC/better-safe-than-sorry
- HPAI-BSC/pubmedqa-cot
- HPAI-BSC/medmcqa-cot
- HPAI-BSC/medqa-cot
language:
- en
library_name: transformers
tags:
- biology
- medical
- TensorBlock
- GGUF
pipeline_tag: question-answering
base_model: HPAI-BSC/Llama3-Aloe-8B-Alpha
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## HPAI-BSC/Llama3-Aloe-8B-Alpha - GGUF
This repo contains GGUF format model files for [HPAI-BSC/Llama3-Aloe-8B-Alpha](https://huggingface.co/HPAI-BSC/Llama3-Aloe-8B-Alpha).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">馃憖 See what we built 馃憖</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">馃憖 See what we built 馃憖</a>
</th>
</tr>
</table>
## Prompt template
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Llama3-Aloe-8B-Alpha-Q2_K.gguf](https://huggingface.co/tensorblock/Llama3-Aloe-8B-Alpha-GGUF/blob/main/Llama3-Aloe-8B-Alpha-Q2_K.gguf) | Q2_K | 2.961 GB | smallest, significant quality loss - not recommended for most purposes |
| [Llama3-Aloe-8B-Alpha-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama3-Aloe-8B-Alpha-GGUF/blob/main/Llama3-Aloe-8B-Alpha-Q3_K_S.gguf) | Q3_K_S | 3.413 GB | very small, high quality loss |
| [Llama3-Aloe-8B-Alpha-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama3-Aloe-8B-Alpha-GGUF/blob/main/Llama3-Aloe-8B-Alpha-Q3_K_M.gguf) | Q3_K_M | 3.743 GB | very small, high quality loss |
| [Llama3-Aloe-8B-Alpha-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama3-Aloe-8B-Alpha-GGUF/blob/main/Llama3-Aloe-8B-Alpha-Q3_K_L.gguf) | Q3_K_L | 4.025 GB | small, substantial quality loss |
| [Llama3-Aloe-8B-Alpha-Q4_0.gguf](https://huggingface.co/tensorblock/Llama3-Aloe-8B-Alpha-GGUF/blob/main/Llama3-Aloe-8B-Alpha-Q4_0.gguf) | Q4_0 | 4.341 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Llama3-Aloe-8B-Alpha-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama3-Aloe-8B-Alpha-GGUF/blob/main/Llama3-Aloe-8B-Alpha-Q4_K_S.gguf) | Q4_K_S | 4.370 GB | small, greater quality loss |
| [Llama3-Aloe-8B-Alpha-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama3-Aloe-8B-Alpha-GGUF/blob/main/Llama3-Aloe-8B-Alpha-Q4_K_M.gguf) | Q4_K_M | 4.583 GB | medium, balanced quality - recommended |
| [Llama3-Aloe-8B-Alpha-Q5_0.gguf](https://huggingface.co/tensorblock/Llama3-Aloe-8B-Alpha-GGUF/blob/main/Llama3-Aloe-8B-Alpha-Q5_0.gguf) | Q5_0 | 5.215 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Llama3-Aloe-8B-Alpha-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama3-Aloe-8B-Alpha-GGUF/blob/main/Llama3-Aloe-8B-Alpha-Q5_K_S.gguf) | Q5_K_S | 5.215 GB | large, low quality loss - recommended |
| [Llama3-Aloe-8B-Alpha-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama3-Aloe-8B-Alpha-GGUF/blob/main/Llama3-Aloe-8B-Alpha-Q5_K_M.gguf) | Q5_K_M | 5.339 GB | large, very low quality loss - recommended |
| [Llama3-Aloe-8B-Alpha-Q6_K.gguf](https://huggingface.co/tensorblock/Llama3-Aloe-8B-Alpha-GGUF/blob/main/Llama3-Aloe-8B-Alpha-Q6_K.gguf) | Q6_K | 6.143 GB | very large, extremely low quality loss |
| [Llama3-Aloe-8B-Alpha-Q8_0.gguf](https://huggingface.co/tensorblock/Llama3-Aloe-8B-Alpha-GGUF/blob/main/Llama3-Aloe-8B-Alpha-Q8_0.gguf) | Q8_0 | 7.954 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Llama3-Aloe-8B-Alpha-GGUF --include "Llama3-Aloe-8B-Alpha-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Llama3-Aloe-8B-Alpha-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|