File size: 6,772 Bytes
267ac8f
 
 
 
 
 
 
 
 
 
f40adc2
 
 
 
 
 
 
267ac8f
 
 
 
 
 
 
52554af
0940ed9
 
 
8281f4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0940ed9
 
 
 
 
8281f4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0940ed9
267ac8f
 
52554af
267ac8f
 
 
 
 
 
 
 
 
 
52554af
 
 
 
 
 
 
 
 
 
 
 
267ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
base_model: princeton-nlp/Mistral-7B-Instruct-KTO
tags:
- TensorBlock
- GGUF
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)


## princeton-nlp/Mistral-7B-Instruct-KTO - GGUF

This repo contains GGUF format model files for [princeton-nlp/Mistral-7B-Instruct-KTO](https://huggingface.co/princeton-nlp/Mistral-7B-Instruct-KTO).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).


## Our projects
<table border="1" cellspacing="0" cellpadding="10">
  <tr>
    <th colspan="2" style="font-size: 25px;">Forge</th>
  </tr>
  <tr>
    <th colspan="2">
      <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
    </th>
  </tr>
  <tr>
    <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
  </tr>
  <tr>
    <th colspan="2">
      <a href="https://github.com/TensorBlock/forge" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸš€ Try it now! πŸš€</a>
    </th>
  </tr>

  <tr>
    <th style="font-size: 25px;">Awesome MCP Servers</th>
    <th style="font-size: 25px;">TensorBlock Studio</th>
  </tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
  <tr>
    <th>
      <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
    <th>
      <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
  </tr>
</table>
## Prompt template


```
[INST] {system_prompt}

{prompt} [/INST]
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Mistral-7B-Instruct-KTO-Q2_K.gguf](https://huggingface.co/tensorblock/Mistral-7B-Instruct-KTO-GGUF/blob/main/Mistral-7B-Instruct-KTO-Q2_K.gguf) | Q2_K | 2.532 GB | smallest, significant quality loss - not recommended for most purposes |
| [Mistral-7B-Instruct-KTO-Q3_K_S.gguf](https://huggingface.co/tensorblock/Mistral-7B-Instruct-KTO-GGUF/blob/main/Mistral-7B-Instruct-KTO-Q3_K_S.gguf) | Q3_K_S | 2.947 GB | very small, high quality loss |
| [Mistral-7B-Instruct-KTO-Q3_K_M.gguf](https://huggingface.co/tensorblock/Mistral-7B-Instruct-KTO-GGUF/blob/main/Mistral-7B-Instruct-KTO-Q3_K_M.gguf) | Q3_K_M | 3.277 GB | very small, high quality loss |
| [Mistral-7B-Instruct-KTO-Q3_K_L.gguf](https://huggingface.co/tensorblock/Mistral-7B-Instruct-KTO-GGUF/blob/main/Mistral-7B-Instruct-KTO-Q3_K_L.gguf) | Q3_K_L | 3.560 GB | small, substantial quality loss |
| [Mistral-7B-Instruct-KTO-Q4_0.gguf](https://huggingface.co/tensorblock/Mistral-7B-Instruct-KTO-GGUF/blob/main/Mistral-7B-Instruct-KTO-Q4_0.gguf) | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Mistral-7B-Instruct-KTO-Q4_K_S.gguf](https://huggingface.co/tensorblock/Mistral-7B-Instruct-KTO-GGUF/blob/main/Mistral-7B-Instruct-KTO-Q4_K_S.gguf) | Q4_K_S | 3.856 GB | small, greater quality loss |
| [Mistral-7B-Instruct-KTO-Q4_K_M.gguf](https://huggingface.co/tensorblock/Mistral-7B-Instruct-KTO-GGUF/blob/main/Mistral-7B-Instruct-KTO-Q4_K_M.gguf) | Q4_K_M | 4.068 GB | medium, balanced quality - recommended |
| [Mistral-7B-Instruct-KTO-Q5_0.gguf](https://huggingface.co/tensorblock/Mistral-7B-Instruct-KTO-GGUF/blob/main/Mistral-7B-Instruct-KTO-Q5_0.gguf) | Q5_0 | 4.654 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Mistral-7B-Instruct-KTO-Q5_K_S.gguf](https://huggingface.co/tensorblock/Mistral-7B-Instruct-KTO-GGUF/blob/main/Mistral-7B-Instruct-KTO-Q5_K_S.gguf) | Q5_K_S | 4.654 GB | large, low quality loss - recommended |
| [Mistral-7B-Instruct-KTO-Q5_K_M.gguf](https://huggingface.co/tensorblock/Mistral-7B-Instruct-KTO-GGUF/blob/main/Mistral-7B-Instruct-KTO-Q5_K_M.gguf) | Q5_K_M | 4.779 GB | large, very low quality loss - recommended |
| [Mistral-7B-Instruct-KTO-Q6_K.gguf](https://huggingface.co/tensorblock/Mistral-7B-Instruct-KTO-GGUF/blob/main/Mistral-7B-Instruct-KTO-Q6_K.gguf) | Q6_K | 5.534 GB | very large, extremely low quality loss |
| [Mistral-7B-Instruct-KTO-Q8_0.gguf](https://huggingface.co/tensorblock/Mistral-7B-Instruct-KTO-GGUF/blob/main/Mistral-7B-Instruct-KTO-Q8_0.gguf) | Q8_0 | 7.167 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/Mistral-7B-Instruct-KTO-GGUF --include "Mistral-7B-Instruct-KTO-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/Mistral-7B-Instruct-KTO-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```