File size: 6,394 Bytes
768e182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e145d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
768e182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
inference: false
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- llama
- TensorBlock
- GGUF
datasets:
- LDJnr/Capybara
- jondurbin/airoboros-3.2
- unalignment/toxic-dpo-v0.1
- LDJnr/Verified-Camel
- HuggingFaceH4/no_robots
- Doctor-Shotgun/no-robots-sharegpt
- Doctor-Shotgun/capybara-sharegpt
base_model: Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct - GGUF

This repo contains GGUF format model files for [Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct](https://huggingface.co/Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
  <th style="font-size: 25px;">Awesome MCP Servers</th>
  <th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
<tr>
  <th>
    <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
      display: inline-block;
      padding: 8px 16px;
      background-color: #FF7F50;
      color: white;
      text-decoration: none;
      border-radius: 6px;
      font-weight: bold;
      font-family: sans-serif;
    ">πŸ‘€ See what we built πŸ‘€</a>
  </th>
  <th>
    <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
      display: inline-block;
      padding: 8px 16px;
      background-color: #FF7F50;
      color: white;
      text-decoration: none;
      border-radius: 6px;
      font-weight: bold;
      font-family: sans-serif;
    ">πŸ‘€ See what we built πŸ‘€</a>
  </th>
</tr>
</table>
## Prompt template

```
<s>
### Instruction:
{system_prompt}

### Input:
{prompt}

### Response:
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [TinyLlama-1.1B-32k-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF/blob/main/TinyLlama-1.1B-32k-Instruct-Q2_K.gguf) | Q2_K | 0.402 GB | smallest, significant quality loss - not recommended for most purposes |
| [TinyLlama-1.1B-32k-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF/blob/main/TinyLlama-1.1B-32k-Instruct-Q3_K_S.gguf) | Q3_K_S | 0.465 GB | very small, high quality loss |
| [TinyLlama-1.1B-32k-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF/blob/main/TinyLlama-1.1B-32k-Instruct-Q3_K_M.gguf) | Q3_K_M | 0.511 GB | very small, high quality loss |
| [TinyLlama-1.1B-32k-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF/blob/main/TinyLlama-1.1B-32k-Instruct-Q3_K_L.gguf) | Q3_K_L | 0.551 GB | small, substantial quality loss |
| [TinyLlama-1.1B-32k-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF/blob/main/TinyLlama-1.1B-32k-Instruct-Q4_0.gguf) | Q4_0 | 0.593 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [TinyLlama-1.1B-32k-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF/blob/main/TinyLlama-1.1B-32k-Instruct-Q4_K_S.gguf) | Q4_K_S | 0.596 GB | small, greater quality loss |
| [TinyLlama-1.1B-32k-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF/blob/main/TinyLlama-1.1B-32k-Instruct-Q4_K_M.gguf) | Q4_K_M | 0.622 GB | medium, balanced quality - recommended |
| [TinyLlama-1.1B-32k-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF/blob/main/TinyLlama-1.1B-32k-Instruct-Q5_0.gguf) | Q5_0 | 0.713 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [TinyLlama-1.1B-32k-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF/blob/main/TinyLlama-1.1B-32k-Instruct-Q5_K_S.gguf) | Q5_K_S | 0.713 GB | large, low quality loss - recommended |
| [TinyLlama-1.1B-32k-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF/blob/main/TinyLlama-1.1B-32k-Instruct-Q5_K_M.gguf) | Q5_K_M | 0.728 GB | large, very low quality loss - recommended |
| [TinyLlama-1.1B-32k-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF/blob/main/TinyLlama-1.1B-32k-Instruct-Q6_K.gguf) | Q6_K | 0.841 GB | very large, extremely low quality loss |
| [TinyLlama-1.1B-32k-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF/blob/main/TinyLlama-1.1B-32k-Instruct-Q8_0.gguf) | Q8_0 | 1.089 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF --include "TinyLlama-1.1B-32k-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/TinyLlama-1.1B-32k-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```