PseudoTerminal X
commited on
Update README.md
Browse files
README.md
CHANGED
|
@@ -126,26 +126,86 @@ You may reuse the base model text encoder for inference.
|
|
| 126 |
|
| 127 |
|
| 128 |
```python
|
|
|
|
| 129 |
import torch
|
| 130 |
-
from
|
| 131 |
from lycoris import create_lycoris_from_weights
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
```
|
|
|
|
| 126 |
|
| 127 |
|
| 128 |
```python
|
| 129 |
+
import argparse
|
| 130 |
import torch
|
| 131 |
+
from helpers.models.flux.pipeline import FluxPipeline as DiffusionPipeline
|
| 132 |
from lycoris import create_lycoris_from_weights
|
| 133 |
+
from huggingface_hub import hf_hub_download
|
| 134 |
+
|
| 135 |
+
def generate_image(pipeline, prompt, output_file, num_inference_steps, width, height, guidance_scale, seed, device):
|
| 136 |
+
# Set device
|
| 137 |
+
pipeline.to(device)
|
| 138 |
+
|
| 139 |
+
# Generate image
|
| 140 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 141 |
+
image = pipeline(
|
| 142 |
+
prompt=prompt,
|
| 143 |
+
num_inference_steps=num_inference_steps,
|
| 144 |
+
generator=generator,
|
| 145 |
+
width=width,
|
| 146 |
+
height=height,
|
| 147 |
+
guidance_scale=guidance_scale,
|
| 148 |
+
).images[0]
|
| 149 |
+
|
| 150 |
+
# Save image
|
| 151 |
+
output_file = "output.png"
|
| 152 |
+
image.save(output_file, format="PNG")
|
| 153 |
+
print(f"Image saved as {output_file}")
|
| 154 |
+
|
| 155 |
+
def main():
|
| 156 |
+
parser = argparse.ArgumentParser(description="Generate images using a custom diffusion pipeline with LoRA weights.")
|
| 157 |
+
parser.add_argument("--model_id", type=str, default='black-forest-labs/FLUX.1-dev', help="Model ID from Hugging Face Hub.")
|
| 158 |
+
parser.add_argument("--adapter_id", type=str, default='pytorch_lora_weights.safetensors', help="LoRA weights file.")
|
| 159 |
+
parser.add_argument("--lora_scale", type=float, default=1.0, help="Scale for LoRA weights.")
|
| 160 |
+
parser.add_argument("--output_file", type=str, default="output.png", help="Output file name for the generated image.")
|
| 161 |
+
parser.add_argument("--num_inference_steps", type=int, default=30, help="Number of inference steps.")
|
| 162 |
+
parser.add_argument("--guidance_scale", type=float, default=3.5, help="Guidance scale for the generation.")
|
| 163 |
+
parser.add_argument("--seed", type=int, default=1641421826, help="Random seed for reproducibility.")
|
| 164 |
+
parser.add_argument("--device", type=str, default='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu', help="Device to run the model on.")
|
| 165 |
+
|
| 166 |
+
args = parser.parse_args()
|
| 167 |
+
|
| 168 |
+
# Load model and weights
|
| 169 |
+
hf_hub_download(repo_id="terminusresearch/flux-lokr-garfield-nomask", filename=args.adapter_id, local_dir="./")
|
| 170 |
+
pipeline = DiffusionPipeline.from_pretrained(args.model_id, torch_dtype=torch.bfloat16)
|
| 171 |
+
|
| 172 |
+
# Apply LoRA weights
|
| 173 |
+
wrapper, _ = create_lycoris_from_weights(args.lora_scale, args.adapter_id, pipeline.transformer)
|
| 174 |
+
wrapper.merge_to()
|
| 175 |
+
|
| 176 |
+
print("Model loaded successfully. Ready to generate images.")
|
| 177 |
+
|
| 178 |
+
while True:
|
| 179 |
+
user_input = input("Enter a prompt or 'quit' to exit: ")
|
| 180 |
+
if user_input.lower() == 'quit':
|
| 181 |
+
break
|
| 182 |
+
|
| 183 |
+
# Check for resolution command
|
| 184 |
+
if user_input.startswith("resolution:"):
|
| 185 |
+
resolution = user_input.split(":")[1]
|
| 186 |
+
width, height = map(int, resolution.split("x"))
|
| 187 |
+
print(f"Resolution set to {width}x{height}")
|
| 188 |
+
continue
|
| 189 |
+
|
| 190 |
+
prompt = user_input
|
| 191 |
+
output_file = args.output_file.replace(".png", f"_{prompt.replace(' ', '_')}.png")
|
| 192 |
+
|
| 193 |
+
# Use default or previously set resolution
|
| 194 |
+
width = locals().get('width', 1024)
|
| 195 |
+
height = locals().get('height', 1024)
|
| 196 |
+
|
| 197 |
+
generate_image(
|
| 198 |
+
pipeline=pipeline,
|
| 199 |
+
prompt=prompt,
|
| 200 |
+
output_file=output_file,
|
| 201 |
+
num_inference_steps=args.num_inference_steps,
|
| 202 |
+
width=width,
|
| 203 |
+
height=height,
|
| 204 |
+
guidance_scale=args.guidance_scale,
|
| 205 |
+
seed=args.seed,
|
| 206 |
+
device=args.device
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
if __name__ == "__main__":
|
| 210 |
+
main()
|
| 211 |
```
|