tferhan commited on
Commit
a70d0eb
·
verified ·
1 Parent(s): 30b9e56

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -141
README.md CHANGED
@@ -1,12 +1,27 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
-
 
 
 
10
 
11
 
12
  ## Model Details
@@ -15,185 +30,103 @@ tags: []
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
 
 
91
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
 
 
 
 
 
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - open data
5
+ - morocco
6
+ - questions
7
+ - intents
8
+ - classification
9
+ - function calling
10
+ license: apache-2.0
11
+ language:
12
+ - fr
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
  ---
17
 
18
  # Model Card for Model ID
19
 
20
  <!-- Provide a quick summary of what the model is/does. -->
21
+ This model is fine-tuned from the `camembert-base` model and is designed to classify user intent
22
+ questions for the website data.gov.ma in French. It can distinguish whether a user is making a general inquiry
23
+ or requesting specific data. The training data was generated using GPT-4o-mini and includes information specific
24
+ to data.gov.ma. The model was fine-tuned using LoRA with specific hyperparameters, achieving an accuracy of up to 0.98.
25
 
26
 
27
  ## Model Details
 
30
 
31
  <!-- Provide a longer summary of what this model is. -->
32
 
 
33
 
 
 
 
 
 
 
 
34
 
35
+ - **Developed by:** TFERHAN
36
+ - **Language(s) (NLP):** French
37
+ - **License:** Apache 2.0
38
+ - **Finetuned from model [optional]:** camembert-base
39
 
40
+ ## Use Case
41
 
42
+ - **Purpose:** Classify user intent questions for the chatbot on the data.gov.ma website.
43
+ - **Languages:** French (optimized for), performs poorly on other languages.
44
+ - **Data Source:** Generated using GPT-4o-mini with data from data.gov.ma.
45
 
46
  ## Uses
47
 
 
 
48
  ### Direct Use
49
 
50
+ The model can be directly used to classify user intents in chatbot scenarios for the website data.gov.ma, distinguishing between general inquiries and data requests.
 
 
 
 
51
 
52
+ ### Downstream Use
53
 
54
+ The model is particularly suited for applications involving the French language and can be integrated into larger chatbot systems or
55
+ fine-tuned further for similar tasks in different contexts.
56
 
57
  ### Out-of-Scope Use
58
 
59
+ - Misuse for different languages without fine-tuning.
60
+ - Applications that do not involve French language queries.
61
+ - Sensitive or highly critical applications without extensive validation.
62
 
63
  ## Bias, Risks, and Limitations
64
 
65
+ ### Technical Limitations
66
 
67
+ - Performance may degrade significantly on languages other than French.
68
+ - Limited to intents related to general queries and data requests.
69
 
70
  ### Recommendations
71
 
72
+ - The model should be retrained or fine-tuned with appropriate data before deployment in non-French contexts.
73
+ - Continuous monitoring and evaluation should be conducted to ensure reliability and fairness.
 
74
 
75
  ## How to Get Started with the Model
76
 
77
+ Use the code snippet below to get started with the model:
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
+ ```python
80
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
81
+ import torch
82
 
83
+ model_name = "tferhan/Intent-GovMa-v1"
84
 
85
+ # Load the tokenizer and model
86
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
87
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
88
 
89
+ # Example inference
90
+ questions = ["qu'est ce que open data",
91
+ "je veux les informations de l'eau potable"]
92
+ for question in questions:
93
+ inputs = tokenizer(question, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
94
+ with torch.no_grad():
95
+ outputs = model(**inputs)
96
+
97
+ print(f"question: {question}")
98
+ print(f"predicted type of question: {class_names[torch.argmax(outputs.logits).item()]}\n")
99
+ ```
100
 
101
+ ## Training Details
102
 
103
+ ### Training Data
104
 
105
+ - **Data Source:** Generated using GPT-4o-mini with help from words and data from data.gov.ma.
106
 
107
+ ### Training Procedure
108
 
109
+ - **Preprocessing:**
110
+ - Standard text preprocessing steps - tokenization, text cleaning, and normalization.
111
+ - **Training Hyperparameters:**
112
+ - Epochs: `10`
113
+ - Train Batch Size: `4`
114
+ - Eval Batch Size: `4`
115
+ - Learning Rate: `2e-5`
116
+ - Evaluation Strategy: `epoch`
117
+ - Weight Decay: `0.01`
118
+ - **Log History:** `log_history.json`
119
 
120
  ## Evaluation
121
 
122
+ ### Testing Data & Metrics
 
 
 
 
 
 
 
 
123
 
124
+ - **Testing Data:** Subset of the generated data based on data.gov.ma.
125
+ - **Evaluation Metrics:** Accuracy.
 
 
 
 
 
 
 
 
 
126
 
127
  ### Results
128
 
129
+ - **Maximum Accuracy:** 0.98%
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
 
131
 
 
132