File size: 56,231 Bytes
32ada3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch LLaMA model."""
import json
import math
import warnings
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    MoeModelOutputWithPast, MoeCausalLMOutputWithPast,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)
# we just reuse everything we don't modified
from transformers.models.llama.modeling_llama import (
    LlamaRMSNorm, LlamaRotaryEmbedding,
    LlamaLinearScalingRotaryEmbedding,
    LlamaDynamicNTKScalingRotaryEmbedding,
    LlamaAttention,
    LlamaMLP,
    LlamaFlashAttention2,
    LlamaSdpaAttention,
    LlamaDecoderLayer
)
from .configuration_llama import LlamaMoDConfig


if is_flash_attn_2_available():
    from flash_attn import flash_attn_func, flash_attn_varlen_func
    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "LlamaMoDConfig"


def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)

LLAMA_ATTENTION_CLASSES = {
    "eager": LlamaAttention,
    "flash_attention_2": LlamaFlashAttention2,
    "sdpa": LlamaSdpaAttention,
}

def dual_router_aux_loss(
    gate_logits: torch.Tensor, num_experts: torch.Tensor = 40, capacity_load=5, attention_mask: Optional[torch.Tensor] = None
) -> float:
    r"""
    Computes auxiliary load balancing loss as in Layer wise mode - implemented in Pytorch.

    Modified from Switch Transformer (https://arxiv.org/abs/2101.03961), I mean mixtral model.
    This function implements the loss function presented in equations (4) - (6) of the paper.
    It aims at penalizing cases where the routing between experts is too unbalanced.

    Args:
        gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
            Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
            shape [batch_size X sequence_length, num_experts].
        attention_mask (`torch.Tensor`, None):
            The attention_mask used in forward function
            shape [batch_size X sequence_length] if not None.
        num_experts (`int`):
            Number of layers
        top_k (`int`):
            Number of experts (capacility load * num_experts)

    Returns:
        The auxiliary loss.
    """
    if gate_logits is None or not isinstance(gate_logits, tuple):
        return 0

    bce_loss = nn.BCEWithLogitsLoss()
    if isinstance(gate_logits, tuple):
        compute_device = gate_logits[0].device
        concatenated_gate_logits = torch.cat([layer_gate.unsqueeze(-1).to(compute_device) for layer_gate in gate_logits], dim=-1)
    seq_len = concatenated_gate_logits.shape[1]
    top_k = int(capacity_load*seq_len)
    bs = concatenated_gate_logits.shape[0]
    # concatenated_gate_logits : bs x seq_len x [ route logits, mlp router pred ] x layers
    routing_weights = torch.nn.functional.softmax(concatenated_gate_logits[:, :, 0, :], dim=1)
    # routing_weights = routing_weights
    _, selected_tokens = torch.topk(routing_weights, top_k, dim=1)
    pred_logits = concatenated_gate_logits[:, :, 1, :]
    router_targets = torch.zeros_like(pred_logits).view(-1)
    router_targets[selected_tokens.view(-1)] = 1.0
    loss = bce_loss(pred_logits, router_targets.view(bs, seq_len, -1))
    return loss

class LlamaMoDDuaRouter(nn.Module):
    # implement the prediction inside this instead to make sure weights are transferable
    # Implement method 1

    def __init__(self, config: LlamaMoDConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.layer_idx = layer_idx
        self.capacity_factor = config.capacity_load
        self.dynamic_skip = config.setup_layer_mod[layer_idx]
        if self.dynamic_skip:
            self.mod_router = nn.Linear(self.hidden_size, 1, bias=False)
            # used in inference instead
            self.mlp_router = nn.Sequential(
                nn.Linear(self.hidden_size, self.hidden_size//2),
                nn.SiLU(),
                nn.Linear(self.hidden_size//2, 1, bias=False)
            )

        self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)

        self.mlp = LlamaMLP(config)
        self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*):
                attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
                query_sequence_length, key_sequence_length)` if default attention is used.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

        initial_residual = hidden_states
        if self.dynamic_skip:
            residual = hidden_states
            seq_len = hidden_states.shape[1]
            route = torch.softmax(self.mod_router(hidden_states), dim=1)
            mlp_router_logits = self.mlp_router(hidden_states)
            if not self.training:
                # use mlp for during inference
                _old_router = route
                route = torch.sigmoid(mlp_router_logits)
            hidden_states = self.input_layernorm(hidden_states)

            if not self.training and hidden_states.shape[1] == 1 and hidden_states.shape[0] == 1:
                # TODO: fix this broke when batch is > 1
                if route[-1] > 0.5:
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
                        hidden_states=hidden_states,
                        attention_mask=attention_mask,
                        position_ids=position_ids,
                        past_key_value=past_key_value,
                        output_attentions=output_attentions,
                        use_cache=use_cache,
                        **kwargs,
                    )
                    hidden_states = residual + hidden_states
                    # Fully Connected
                    residual = hidden_states
                    hidden_states = self.post_attention_layernorm(hidden_states)
                    hidden_states = self.mlp(hidden_states)
                    hidden_states = residual + hidden_states
                    hidden_states *= route
                else:
                    hidden_states = initial_residual
                    self_attn_weights = None
                    present_key_value = None
            else:
                # There should be a sigmoid version where we sample the route based on > 0.5
                # but this doesn't really work mainly in batch inference
                acc_route_choice = torch.cumsum(route > 0.5, dim=-1)
                min_top_k = max(int(self.capacity_factor*seq_len), 2)
                top_k = max(torch.max(acc_route_choice), min_top_k)
                weights, selected_tokens = torch.topk(route, top_k, dim=1, sorted=False)
                # reorder back to original position?
                selected_tokens, index = torch.sort(selected_tokens, dim=1)
                weights = torch.gather(weights, dim=1, index=index)
                indices_expanded = selected_tokens.expand(-1, -1, self.hidden_size)
                sub_hidden_states = torch.gather(hidden_states, 1, indices_expanded)
                sub_position_ids = position_ids[: , :top_k]
                if len(attention_mask.shape) == 4:
                    sub_attention_mask = attention_mask[:, :, :top_k,:top_k]
                else:
                    sub_attention_mask = attention_mask[:, :top_k]

                residual = sub_hidden_states

                sub_hidden_states, attn_weights, present_key_value = self.self_attn(
                    hidden_states=sub_hidden_states,
                    attention_mask=sub_attention_mask,
                    position_ids=sub_position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    **kwargs,
                )
                if not self.training:
                    print(int(top_k), seq_len, self.layer_idx)
                    print(selected_tokens.flatten())
                    print(_old_router.flatten())
                    print(route.flatten())

                sub_hidden_states = residual + sub_hidden_states
                sub_residual = sub_hidden_states
                # MLP
                sub_hidden_states = self.post_attention_layernorm(sub_hidden_states)
                sub_hidden_states = self.mlp(sub_hidden_states)
                sub_hidden_states = sub_residual + sub_hidden_states

                hidden_states = torch.scatter(
                    initial_residual,
                    dim=1,
                    index=indices_expanded,
                    src=sub_hidden_states * weights,
                )
        else:
            residual = initial_residual
            hidden_states = self.input_layernorm(hidden_states)

            # Self Attention
            hidden_states, self_attn_weights, present_key_value = self.self_attn(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                **kwargs,
            )
            hidden_states = residual + hidden_states

            # Fully Connected
            residual = hidden_states
            hidden_states = self.post_attention_layernorm(hidden_states)
            hidden_states = self.mlp(hidden_states)
            hidden_states = residual + hidden_states

        # this section must be modified during inference, otherwise no speedup
        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        if self.dynamic_skip:
            outputs += (torch.concat([route, mlp_router_logits], dim=-1), )

        return outputs

def load_balancing_loss_func(
    gate_logits: torch.Tensor, num_experts: torch.Tensor = 40, capacity_load=0.125, attention_mask: Optional[torch.Tensor] = None
) -> float:
    r"""
    Computes auxiliary load balancing loss as in Layer wise mode - implemented in Pytorch.

    The original paper of mixture of depth didn't specify beyond one word : use aux loss

    I would assume its from this:

    Modified from Switch Transformer (https://arxiv.org/abs/2101.03961), I mean mixtral model.
    This function implements the loss function presented in equations (4) - (6) of the paper.
    It aims at penalizing cases where the routing between experts is too unbalanced.

    Args:
        gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
            Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
            shape [batch_size X sequence_length, num_experts].
        attention_mask (`torch.Tensor`, None):
            The attention_mask used in forward function
            shape [batch_size X sequence_length] if not None.
        num_experts (`int`):
            Number of layers
        top_k (`int`):
            Number of experts (capacility load * num_experts)

    Returns:
        The auxiliary loss.
    """
    if gate_logits is None or not isinstance(gate_logits, tuple):
        return 0

    if isinstance(gate_logits, tuple):
        compute_device = gate_logits[0].device
        concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=-1)
    batch_size, sequence_length, num_hidden_layers = concatenated_gate_logits.shape
    top_k = int(capacity_load*sequence_length)

    # bs x seq_length x layers
    routing_weights = torch.nn.functional.sigmoid(concatenated_gate_logits)
    # bs x layers x seq_length
    routing_weights = routing_weights.permute(0, 2, 1)
    _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
    expert_mask = torch.nn.functional.one_hot(selected_experts, sequence_length)
    expert_mask = expert_mask.reshape(-1, top_k, sequence_length)
    # bs x num_layers x top_k x sequence length
    if attention_mask is None:
        # Compute the percentage of tokens routed to each experts
        tokens_per_expert = torch.mean(expert_mask.float(), dim=0)

        # Compute the average probability of routing to these experts
        router_prob_per_expert = torch.mean(routing_weights, dim=0)
    else:
        # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
        expert_attention_mask = (
            attention_mask[:, :, None, None]
            .expand((batch_size, sequence_length, top_k, num_experts))
            .permute(0, 3, 2, 1)
            .reshape(-1, top_k, sequence_length)
            .to(compute_device)
        )

        # Compute the percentage of tokens routed to each position id
        tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
            expert_attention_mask, dim=0
        )
        # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
        router_per_expert_attention_mask = (
            attention_mask[:, :, None]
            .expand((batch_size, sequence_length, num_experts))
            .reshape(-1, sequence_length)
            .to(compute_device)
        )
        # Compute the average probability of routing to these experts
        router_prob_per_expert = torch.sum(routing_weights.reshape(-1, sequence_length) * router_per_expert_attention_mask, dim=0) / torch.sum(
            router_per_expert_attention_mask, dim=0
        )
    overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
    return overall_loss



class LlamaMoDBalanceAux(nn.Module):
    # implement the prediction inside this instead to make sure weights are transferable
    # Implement method 1

    def __init__(self, config: LlamaMoDConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.layer_idx = layer_idx
        self.capacity_factor = config.capacity_load
        self.dynamic_skip = config.setup_layer_mod[layer_idx]
        if self.dynamic_skip:
            self.mod_router = nn.Linear(self.hidden_size, 1, bias=True)

        self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)

        self.mlp = LlamaMLP(config)
        self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*):
                attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
                query_sequence_length, key_sequence_length)` if default attention is used.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

        initial_residual = hidden_states
        if self.dynamic_skip:
            residual = hidden_states
            seq_len = hidden_states.shape[1]
            route = torch.sigmoid(self.mod_router(hidden_states))

            if not self.training and (hidden_states.shape[1] == 1 and hidden_states.shape[0] == 1):
                # TODO: fix this broke when batch is > 1
                # single inference mode
                if route[-1] > 0.5:
                    hidden_states = self.input_layernorm(hidden_states)
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
                        hidden_states=hidden_states,
                        attention_mask=attention_mask,
                        position_ids=position_ids,
                        past_key_value=past_key_value,
                        output_attentions=output_attentions,
                        use_cache=use_cache,
                        **kwargs,
                    )
                    hidden_states = residual + hidden_states
                    # Fully Connected
                    residual = hidden_states
                    hidden_states = self.post_attention_layernorm(hidden_states)
                    hidden_states = self.mlp(hidden_states)
                    hidden_states = residual + hidden_states
                else:
                    hidden_states = initial_residual
                    self_attn_weights = None
                    present_key_value = None

            else:
                acc_route_choice = torch.cumsum(route > 0.5, dim=1)
                min_top_k = max(int(self.capacity_factor*seq_len), 2)
                top_k = max(torch.max(acc_route_choice), min_top_k)
                # with open('experiments_bias_0.1_aux_0.001.jsonl', 'a') as fout:
                #     fout.write(json.dumps({'idx': self.layer_idx, 'top_k': int(top_k), 'seq_len': seq_len})+'\n')
                weights, selected_tokens = torch.topk(route, top_k, dim=1, sorted=False)
                # reorder back to original position?
                selected_tokens, index = torch.sort(selected_tokens, dim=1)
                if not self.training:
                    print(int(top_k), seq_len, self.layer_idx)
                    print(selected_tokens.flatten())

                weights = torch.gather(weights, dim=1, index=index)
                indices_expanded = selected_tokens.expand(-1, -1, self.hidden_size)
                sub_hidden_states = torch.gather(hidden_states, 1, indices_expanded)
                sub_position_ids = position_ids[: , :top_k]
                if len(attention_mask.shape) == 4:
                    sub_attention_mask = attention_mask[:, :, :top_k,:top_k]
                else:
                    sub_attention_mask = attention_mask[:, :top_k]


                residual = sub_hidden_states
                sub_hidden_states = self.input_layernorm(sub_hidden_states)
                sub_hidden_states, attn_weights, present_key_value = self.self_attn(
                    hidden_states=sub_hidden_states,
                    attention_mask=sub_attention_mask,
                    position_ids=sub_position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    **kwargs,
                )

                sub_hidden_states = residual + sub_hidden_states
                sub_residual = sub_hidden_states
                # MLP
                sub_hidden_states = self.post_attention_layernorm(sub_hidden_states)
                sub_hidden_states = self.mlp(sub_hidden_states)
                sub_hidden_states = sub_residual + sub_hidden_states
                hidden_states = sub_hidden_states
                hidden_states = torch.scatter(
                    initial_residual,
                    dim=1,
                    index=indices_expanded,
                    src=sub_hidden_states,
                )
        else:
            residual = initial_residual
            hidden_states = self.input_layernorm(hidden_states)

            # Self Attention
            hidden_states, self_attn_weights, present_key_value = self.self_attn(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                **kwargs,
            )
            hidden_states = residual + hidden_states

            # Fully Connected
            residual = hidden_states
            hidden_states = self.post_attention_layernorm(hidden_states)
            hidden_states = self.mlp(hidden_states)
            hidden_states = residual + hidden_states

        # this section must be modified during inference, otherwise no speedup
        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        if self.dynamic_skip:
            outputs += (route, )

        return outputs


class LlamaPreTrainedModel(PreTrainedModel):
    config_class = LlamaMoDConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LlamaDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
        if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
            raise ValueError(
                "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
                "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
            )

        for layer in self.model.layers:
            device = layer.input_layernorm.weight.device
            if hasattr(self.config, "_pre_quantization_dtype"):
                dtype = self.config._pre_quantization_dtype
            else:
                dtype = layer.self_attn.o_proj.weight.dtype
            layer.self_attn.past_key_value = cache_cls(
                self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
            )

    def _reset_cache(self):
        for layer in self.model.layers:
            layer.self_attn.past_key_value = None


LLAMA_DECODER_LAYER = {
    'none': LlamaDecoderLayer,
    'mod_1aux': LlamaMoDBalanceAux,
    'mod_dual': LlamaMoDDuaRouter
}

AUX_LOSS = {
    'mod_1aux': load_balancing_loss_func,
    'mod_dual': dual_router_aux_loss
}

class LlamaMoDModel(LlamaPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]

    Args:
        config: LlamaMoDConfig
    """

    def __init__(self, config: LlamaMoDConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.has_router = config.mod_method != 'none'
        self.layers = nn.ModuleList(
            [LLAMA_DECODER_LAYER[config.mod_method](config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        output_router_logits: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
            )

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        past_seen_tokens = 0
        if use_cache:  # kept for BC (cache positions)
            if not isinstance(past_key_values, StaticCache):
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
                past_seen_tokens = past_key_values.get_seq_length()

        if cache_position is None:
            if isinstance(past_key_values, StaticCache):
                raise ValueError("cache_position is a required argument when using StaticCache.")
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_seen_tokens + inputs_embeds.shape[1]
        )

        # embed positions
        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_router_logits = () if output_router_logits else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)
            if self.has_router and decoder_layer.dynamic_skip and output_router_logits:
                all_router_logits += (layer_outputs[-1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = (
                next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
            )
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return MoeModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            router_logits=all_router_logits
        )

    # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
    # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
    # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
    # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
    def _update_causal_mask(self, attention_mask, input_tensor, cache_position, current_length):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        if hasattr(getattr(self.layers[0], "self_attn", {}), "past_key_value"):  # static cache
            target_length = self.config.max_position_embeddings
        else:  # dynamic cache
            target_length = (
                attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else current_length + 1
            )

        causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
        if sequence_length != 1:
            causal_mask = torch.triu(causal_mask, diagonal=1)
        causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
        if attention_mask is not None:
            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
            if attention_mask.dim() == 2:
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
                causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
            elif attention_mask.dim() == 4:
                # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
                # cache. In that case, the 4D attention mask attends to the newest tokens only.
                if attention_mask.shape[-2] < cache_position[0] + sequence_length:
                    offset = cache_position[0]
                else:
                    offset = 0
                mask_shape = attention_mask.shape
                mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
                causal_mask[
                    : mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
                ] = mask_slice

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type == "cuda"
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask


class LlamaMoDForCausalLM(LlamaPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = LlamaMoDModel(config)
        self.vocab_size = config.vocab_size
        self.route_method = config.mod_method
        self.router_aux_loss_coef = config.router_aux_loss_coef
        if config.mod_method != 'none':
            self.num_experts = sum(config.setup_layer_mod)
            self.capacity_load = config.capacity_load
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        output_router_logits: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, LlamaForCausalLM

        >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
        >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            output_router_logits=output_router_logits
        )

        hidden_states = outputs[0]
        if self.config.pretraining_tp > 1:
            lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
            logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
            logits = torch.cat(logits, dim=-1)
        else:
            logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if output_router_logits:
            aux_loss = AUX_LOSS[self.route_method](
                outputs.router_logits if return_dict else outputs[-1],
                self.num_experts,
                self.capacity_load,
                attention_mask,
            )
            if labels is not None:
                loss += self.router_aux_loss_coef * aux_loss.to(loss.device)


        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return MoeCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
    ):
        # With static cache, the `past_key_values` is None
        # TODO joao: standardize interface for the different Cache classes and remove of this if
        has_static_cache = False
        if past_key_values is None:
            past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None)
            has_static_cache = past_key_values is not None

        past_length = 0
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
                max_cache_length = (
                    torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
                    if past_key_values.get_max_length() is not None
                    else None
                )
                cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
            # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
            # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
            # TODO: use `next_tokens` directly instead.
            model_inputs = {"input_ids": input_ids.contiguous()}

        input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
        if cache_position is None:
            cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
        else:
            cache_position = cache_position[-input_length:]

        if has_static_cache:
            past_key_values = None

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past



class LlamaForSequenceClassification(LlamaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = LlamaModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


class LlamaForQuestionAnswering(LlamaPreTrainedModel):
    base_model_prefix = "transformer"

    # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
    def __init__(self, config):
        super().__init__(config)
        self.transformer = LlamaModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, 2)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.transformer.embed_tokens

    def set_input_embeddings(self, value):
        self.transformer.embed_tokens = value

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
        r"""
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1).to(start_logits.device)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1).to(end_logits.device)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )