thomasht86 commited on
Commit
1ef826a
·
verified ·
1 Parent(s): 86ef6b7

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ onnx/model.onnx_data filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - HIT-TMG/KaLM-embedding-pretrain-data
5
+ - KaLM-Embedding/KaLM-embedding-finetuning-data
6
+ language:
7
+ - en
8
+ - zh
9
+ base_model:
10
+ - KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5
11
+ pipeline_tag: feature-extraction
12
+ library_name: transformers.js
13
+ tags:
14
+ - Retrieval
15
+ - STS
16
+ - Classification
17
+ - Clustering
18
+ - Reranking
19
+ - vllm
20
+ ---
21
+
22
+
23
+
24
+ # KaLM-embedding-multilingual-mini-instruct-v2.5 (ONNX)
25
+
26
+
27
+ This is an ONNX version of [KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5](https://huggingface.co/KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5). It was automatically converted and uploaded using [this Hugging Face Space](https://huggingface.co/spaces/onnx-community/convert-to-onnx).
28
+
29
+
30
+ ## Usage with Transformers.js
31
+
32
+
33
+ See the pipeline documentation for `feature-extraction`: https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.FeatureExtractionPipeline
34
+
35
+
36
+ ---
37
+
38
+
39
+ <!-- <p align="center">
40
+ <img src="imgs/logo.jpg" width="800"/>
41
+ <p>
42
+ -->
43
+ <h1 align="center">KaLM-Embedding-V2.5</h1>
44
+
45
+ <p align="center">
46
+ <a href="https://huggingface.co/KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5">
47
+ <img src="https://img.shields.io/badge/%F0%9F%A4%97_HuggingFace-Model-ffbd45.svg" alt="HuggingFace">
48
+ </a>
49
+ <a href="https://huggingface.co/spaces/nazib61/qdarnt">
50
+ <img src="https://img.shields.io/badge/%F0%9F%A4%97_HuggingFace-Demo-90EE90?style=flat" alt="Demo">
51
+ </a>
52
+ <a href="https://github.com/HITsz-TMG/KaLM-Embedding">
53
+ <img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub Code">
54
+ </a>
55
+ <a href="https://arxiv.org/abs/2506.20923">
56
+ <img src="https://img.shields.io/badge/Paper-KaLM--Embedding-d4333f?logo=arxiv&logoColor=white&colorA=cccccc&colorB=d4333f&style=flat" alt="Paper">
57
+ </a>
58
+ </p>
59
+
60
+ ## Short Description
61
+
62
+ **KaLM-Embedding-V2.5** is a versatile and compact embedding model, which achieves SOTA performance among models of comparable size and competes with models 3–26x larger by leveraging superior training techniques and data.
63
+ ![perf](./imgs/perf.jpg)
64
+
65
+
66
+ ## Model Details
67
+ - Model Size: 0.5B
68
+ - Embedding Dimension: 896
69
+ - Max Input Tokens: 32k
70
+ - MRL dimensions: 896, 512, 256, 128, and 64
71
+ - Attn: Bidirectional attention
72
+ - Pooling: Mean pooling
73
+
74
+ ![archi](./imgs/archi.jpg)
75
+
76
+ ## Training Recipe
77
+ - Large-scale weakly supervised pretraining
78
+ - High-quality supervised finetuning
79
+ - Contrastive distillation with fine-grained soft labels
80
+
81
+ Additionally, focal-style sample reweighting and online hard-negative mixing are employed to emphasize difficult samples and enrich hard negatives.
82
+
83
+
84
+ ## 📑 Open-source Plan
85
+
86
+ - [x] Model Checkpoint
87
+ - [x] [KaLM-embedding-multilingual-mini-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-v1)
88
+ - [x] [KaLM-embedding-multilingual-mini-instruct-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1)
89
+ - [x] [KaLM-embedding-multilingual-mini-instruct-v1.5](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5)
90
+ - [x] [KaLM-embedding-multilingual-mini-instruct-v2](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v2)
91
+ - [x] [KaLM-embedding-multilingual-mini-instruct-v2.5](https://huggingface.co/KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5)
92
+ - [x] Training and Evaluation Code: [HITsz-TMG/KaLM-Embedding](https://github.com/HITsz-TMG/KaLM-Embedding)
93
+ - [x] Technical Report: [KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model](https://arxiv.org/abs/2506.20923v4)
94
+ - [x] Pre-training Data: [Pre-training Data](https://huggingface.co/datasets/HIT-TMG/KaLM-embedding-pretrain-data)
95
+ - [x] Fine-tuning Data: [Fine-tuning Data](https://huggingface.co/datasets/KaLM-Embedding/KaLM-embedding-finetuning-data)
96
+
97
+ ## Evaluation
98
+ ### Overall results on MTEB (cmn, v1) and MTEB (eng, v1).
99
+ ![overall](./imgs/overall.jpg)
100
+
101
+ ### Detailed model performance on MTEB (cmn, v1).
102
+ ![mteb_cmn](./imgs/mteb_cmn.jpg)
103
+
104
+ ### Detailed model performance on MTEB (eng, v1).
105
+ ![mteb_cmn](./imgs/mteb_eng.jpg)
106
+
107
+ ### OOD evaluation: KaLM-Embedding-V2.5 exhibits strong OOD generalization, competing with the 15x larger model in real-world retrieval scenarios.
108
+ ![ood](./imgs/ood.jpg)
109
+
110
+ ### Matryoshka embedding evaluation: KaLM-Embedding-V2.5 maintains robust performance with matryoshka embeddings even at smaller dimensions.
111
+ ![matry](./imgs/matry.jpg)
112
+
113
+ ## Requirements
114
+ Since we have used the Qwen2 model, we advise you to install `transformers>=4.37.0`, or you might encounter the following error:
115
+ ```
116
+ KeyError: 'qwen2'
117
+ ```
118
+
119
+ ## Usage
120
+ ### sentence-transformers support
121
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
122
+
123
+ ```
124
+ pip install -U sentence-transformers
125
+ ```
126
+
127
+ Then you can use the model like this:
128
+
129
+ ```python
130
+ from sentence_transformers import SentenceTransformer
131
+ import torch
132
+
133
+ model = SentenceTransformer(
134
+ "KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5",
135
+ trust_remote_code=True,
136
+ model_kwargs={
137
+ "torch_dtype": torch.bfloat16,
138
+ "attn_implementation": "flash_attention_2", # Optional
139
+ },
140
+ )
141
+ model.max_seq_length = 512
142
+
143
+ sentences = ["This is an example sentence", "Each sentence is converted"]
144
+ embeddings = model.encode(
145
+ sentences,
146
+ normalize_embeddings=True,
147
+ batch_size=256,
148
+ show_progress_bar=True,
149
+ )
150
+ print(embeddings)
151
+ '''
152
+ [[-0.01043701 -0.02172852 0.0100708 ... -0.02807617 0.00157166
153
+ -0.03637695]
154
+ [-0.00424194 0.02966309 0.03686523 ... -0.02587891 0.01953125
155
+ -0.00125122]]
156
+ '''
157
+ ```
158
+
159
+ We add task instructions for asymmetric tasks: retrieval, reranking, classification, and clustering.
160
+ And, we add task instructions for both queries and passages in symmetric tasks, including STS and pair classification.
161
+ If you want to add task instructions to the query, you can use the model like this:
162
+
163
+ ```python
164
+ from sentence_transformers import SentenceTransformer
165
+ import torch
166
+
167
+ model = SentenceTransformer(
168
+ "KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5",
169
+ trust_remote_code=True,
170
+ model_kwargs={
171
+ "torch_dtype": torch.bfloat16,
172
+ "attn_implementation": "flash_attention_2", # Optional
173
+ },
174
+ )
175
+ model.max_seq_length = 512
176
+
177
+ sentences = ["This is an example sentence", "Each sentence is converted"]
178
+ prompt = "Instruct: Classifying the category of french news.\nQuery:"
179
+ embeddings = model.encode(
180
+ sentences,
181
+ prompt=prompt,
182
+ normalize_embeddings=True,
183
+ batch_size=256,
184
+ show_progress_bar=True,
185
+ )
186
+ print(embeddings)
187
+ '''
188
+ [[-0.01867676 0.02319336 0.00280762 ... -0.02075195 0.00196838
189
+ -0.0703125 ]
190
+ [-0.0067749 0.03491211 0.01434326 ... -0.0043335 0.00509644
191
+ -0.04174805]]
192
+ '''
193
+ ```
194
+
195
+ Or you can use `encode_query` and `encode_document` to automatically add the default prompt for queries (`"Instruct: Given a query, retrieve documents that answer the query \n Query: "`) and documents (`""`), respectively.
196
+
197
+ ```python
198
+ from sentence_transformers import SentenceTransformer
199
+ import torch
200
+
201
+ model = SentenceTransformer(
202
+ "KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5",
203
+ trust_remote_code=True,
204
+ model_kwargs={
205
+ "torch_dtype": torch.bfloat16,
206
+ "attn_implementation": "flash_attention_2", # Optional
207
+ },
208
+ )
209
+ model.max_seq_length = 512
210
+
211
+ queries = [
212
+ "What is the capital of China?",
213
+ "Explain gravity",
214
+ ]
215
+ documents = [
216
+ "The capital of China is Beijing.",
217
+ "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
218
+ ]
219
+
220
+ query_embeddings = model.encode_query(queries)
221
+ document_embeddings = model.encode_document(documents)
222
+
223
+ similarities = model.similarity(query_embeddings, document_embeddings)
224
+ print(similarities)
225
+ '''
226
+ tensor([[0.9034, 0.2563],
227
+ [0.3153, 0.7396]])
228
+ '''
229
+ ```
230
+
231
+ ### vllm support
232
+ ```
233
+ pip install -U vllm==0.8.5
234
+ ```
235
+ ```python
236
+ import torch
237
+ import vllm
238
+ from vllm import LLM
239
+ def get_detailed_instruct(task_description: str, query: str) -> str:
240
+ return f'Instruct: {task_description}\nQuery:{query}'
241
+
242
+ task = 'Given a query, retrieve documents that answer the query'
243
+ queries = [
244
+ get_detailed_instruct(task, 'What is the capital of China?'),
245
+ get_detailed_instruct(task, 'Explain gravity')
246
+ ]
247
+ documents = [
248
+ "The capital of China is Beijing.",
249
+ "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
250
+ ]
251
+ input_texts = queries + documents
252
+
253
+ model = LLM(model="{MODEL_NAME_OR_PATH}", task="embed", trust_remote_code=True, dtype="float16")
254
+
255
+ outputs = model.embed(input_texts)
256
+ embeddings = torch.tensor([o.outputs.embedding for o in outputs])
257
+ scores = (embeddings[:2] @ embeddings[2:].T)
258
+ print(scores.tolist())
259
+ ```
260
+
261
+
262
+ ## Citation
263
+ If you find this model useful, please consider giving a star and citation.
264
+ ```
265
+ @misc{zhao2025kalmembeddingv2,
266
+ title={KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model},
267
+ author={Xinping Zhao and Xinshuo Hu and Zifei Shan and Shouzheng Huang and Yao Zhou and Xin Zhang and Zetian Sun and Zhenyu Liu and Dongfang Li and Xinyuan Wei and Youcheng Pan and Yang Xiang and Meishan Zhang and Haofen Wang and Jun Yu and Baotian Hu and Min Zhang},
268
+ year={2025},
269
+ eprint={2506.20923},
270
+ archivePrefix={arXiv},
271
+ primaryClass={cs.CL},
272
+ url={https://arxiv.org/abs/2506.20923},
273
+ }
274
+
275
+ @misc{hu2025kalmembedding,
276
+ title={KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model},
277
+ author={Xinshuo Hu and Zifei Shan and Xinping Zhao and Zetian Sun and Zhenyu Liu and Dongfang Li and Shaolin Ye and Xinyuan Wei and Qian Chen and Baotian Hu and Haofen Wang and Jun Yu and Min Zhang},
278
+ year={2025},
279
+ eprint={2501.01028},
280
+ archivePrefix={arXiv},
281
+ primaryClass={cs.CL},
282
+ url={https://arxiv.org/abs/2501.01028},
283
+ }
284
+ ```
285
+
286
+
287
+ ## Contact
288
+ If you encounter any issue, feel free to contact us via the email: <[email protected]>, <[email protected]>
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "_name_or_path": "KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5",
4
+ "architectures": [
5
+ "Qwen2Model"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoModel": "KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5--modeling.Qwen2Model"
10
+ },
11
+ "bos_token_id": 151643,
12
+ "eos_token_id": 151643,
13
+ "export_model_type": "transformer",
14
+ "hidden_act": "silu",
15
+ "hidden_size": 896,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 4864,
18
+ "is_causal": false,
19
+ "max_position_embeddings": 131072,
20
+ "max_window_layers": 24,
21
+ "model_type": "qwen2",
22
+ "num_attention_heads": 14,
23
+ "num_hidden_layers": 24,
24
+ "num_key_value_heads": 2,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_scaling": null,
27
+ "rope_theta": 1000000.0,
28
+ "sliding_window": null,
29
+ "tie_word_embeddings": true,
30
+ "torch_dtype": "float32",
31
+ "transformers_version": "4.49.0",
32
+ "use_cache": false,
33
+ "use_sliding_window": false,
34
+ "vocab_size": 151936
35
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7aad5285192007982fc0a13bcf35148247bad2a3d63480d65d6db0e865c266d9
3
+ size 825306
onnx/model.onnx_data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8843a6b9a1eb48423dac7284d0d3da2fd99468df7d4d758cb49abe385e470196
3
+ size 2043215360
onnx/model_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc1349bd3e217e2403b48591f942246eb8dcdf9304a7943d373ce46595564ecc
3
+ size 814022610
onnx/model_fp16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:975eecdfd194a34bd2a54ba9f8b07b3c4cec228c5686ecb727d3c2cc1ba0867f
3
+ size 1022406024
onnx/model_int8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24b1592de862610a04152900c08fc5ccafc8c9f020c7c3d4ff3815f22426aec5
3
+ size 562341284
onnx/model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fbdabd440c231dd0bb6482e78bba8a75fe0bcd7eb667aebc68afc4f134aad37
3
+ size 836385426
onnx/model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5eb8abd440e7778cead911606521f52e1b35067bb648484f2928d83f2b314b4
3
+ size 508055107
onnx/model_quantized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24b1592de862610a04152900c08fc5ccafc8c9f020c7c3d4ff3815f22426aec5
3
+ size 562341284
onnx/model_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca56ccd7877c920845ddaaaa57cdfa5f2086d1dfd70b381abc3596a612310144
3
+ size 562341369
quantize_config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "modes": [
3
+ "fp16",
4
+ "q8",
5
+ "int8",
6
+ "uint8",
7
+ "q4",
8
+ "q4f16",
9
+ "bnb4"
10
+ ],
11
+ "per_channel": false,
12
+ "reduce_range": false,
13
+ "block_size": null,
14
+ "is_symmetric": true,
15
+ "accuracy_level": null,
16
+ "quant_type": 1,
17
+ "op_block_list": null
18
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f79052deba517b0663d877714e117a31a4a6243cddb85fc4443c80a2fa65a20
3
+ size 11419302
tokenizer_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "extra_special_tokens": {},
39
+ "max_length": 512,
40
+ "model_max_length": 32768,
41
+ "pad_to_multiple_of": null,
42
+ "pad_token": "<|endoftext|>",
43
+ "pad_token_type_id": 0,
44
+ "padding_side": "left",
45
+ "split_special_tokens": false,
46
+ "stride": 0,
47
+ "tokenizer_class": "Qwen2Tokenizer",
48
+ "truncation_side": "right",
49
+ "truncation_strategy": "longest_first",
50
+ "unk_token": null
51
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff