threite commited on
Commit
9913816
·
1 Parent(s): edaefb5

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.36 +/- 1.23
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a10a65f49e2c68a98e6da8143779590735debbc96bdf7e75bbed44f8caec1805
3
+ size 108107
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7380aab3a0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f7380aa1ea0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674486710340317161,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAF5mmPnYYArxNrRQ/F5mmPnYYArxNrRQ/F5mmPnYYArxNrRQ/F5mmPnYYArxNrRQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJRytv48o2L9NKW4/JV57PllxYb/0sXs/YISlP4pBgz+d174/X4LTv+9dMD846py/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAXmaY+dhgCvE2tFD9kPMW4SVNwu/t0RTwXmaY+dhgCvE2tFD9kPMW4SVNwu/t0RTwXmaY+dhgCvE2tFD9kPMW4SVNwu/t0RTwXmaY+dhgCvE2tFD9kPMW4SVNwu/t0RTyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.32538673 -0.0079404 0.58076936]\n [ 0.32538673 -0.0079404 0.58076936]\n [ 0.32538673 -0.0079404 0.58076936]\n [ 0.32538673 -0.0079404 0.58076936]]",
60
+ "desired_goal": "[[-1.3524214 -1.6887378 0.9303177 ]\n [ 0.24547632 -0.8806358 0.9831841 ]\n [ 1.2931023 1.0254376 1.490955 ]\n [-1.6524161 0.6889333 -1.2258978 ]]",
61
+ "observation": "[[ 3.2538673e-01 -7.9404023e-03 5.8076936e-01 -9.4049406e-05\n -3.6670736e-03 1.2051816e-02]\n [ 3.2538673e-01 -7.9404023e-03 5.8076936e-01 -9.4049406e-05\n -3.6670736e-03 1.2051816e-02]\n [ 3.2538673e-01 -7.9404023e-03 5.8076936e-01 -9.4049406e-05\n -3.6670736e-03 1.2051816e-02]\n [ 3.2538673e-01 -7.9404023e-03 5.8076936e-01 -9.4049406e-05\n -3.6670736e-03 1.2051816e-02]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEH3dPfhl9L2gNek7BGqEPeRFvb2xjE48mzspO05uC73/MUc+YhUBvvMifj1zR34+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.10814869 -0.11933511 0.00711699]\n [ 0.06465533 -0.09241846 0.01260679]\n [ 0.00258229 -0.03404074 0.19452666]\n [-0.12605813 0.06204505 0.24831943]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIamrZWl8kEMCUhpRSlIwBbJRLMowBdJRHQKPO94t6HCZ1fZQoaAZoCWgPQwiZZrrXST0GwJSGlFKUaBVLMmgWR0CjzrwtjCpFdX2UKGgGaAloD0MIpFGBk20AC8CUhpRSlGgVSzJoFkdAo86BsCT2WnV9lChoBmgJaA9DCAw9YvTcchLAlIaUUpRoFUsyaBZHQKPOQeFtbcJ1fZQoaAZoCWgPQwj3yycrhmv3v5SGlFKUaBVLMmgWR0Cjz/kyLyc1dX2UKGgGaAloD0MIuB0aFqPuBcCUhpRSlGgVSzJoFkdAo8+92Rq46XV9lChoBmgJaA9DCHIaogp/hva/lIaUUpRoFUsyaBZHQKPPg0ngHeJ1fZQoaAZoCWgPQwjryJHOwAgJwJSGlFKUaBVLMmgWR0Cjz0NEw35vdX2UKGgGaAloD0MIx2Rx/5EpAcCUhpRSlGgVSzJoFkdAo9D+ZTho/XV9lChoBmgJaA9DCGmPF9LhQQ/AlIaUUpRoFUsyaBZHQKPQwuscQy11fZQoaAZoCWgPQwjvAE9auMwMwJSGlFKUaBVLMmgWR0Cj0IhUBGQTdX2UKGgGaAloD0MIV1wclZto+7+UhpRSlGgVSzJoFkdAo9BIVymygXV9lChoBmgJaA9DCKKakqzD8QbAlIaUUpRoFUsyaBZHQKPSKAQxveh1fZQoaAZoCWgPQwjQRUPGo7QKwJSGlFKUaBVLMmgWR0Cj0ezY287IdX2UKGgGaAloD0MIg6Pk1TmmEcCUhpRSlGgVSzJoFkdAo9Gy+10DEHV9lChoBmgJaA9DCDo/xXHg9QHAlIaUUpRoFUsyaBZHQKPRcsJ6Y3N1fZQoaAZoCWgPQwjHLlG9NXAIwJSGlFKUaBVLMmgWR0Cj0zFJQLuydX2UKGgGaAloD0MIBMb6Bia3CsCUhpRSlGgVSzJoFkdAo9L1/BnBcnV9lChoBmgJaA9DCFQ1QdR9QA/AlIaUUpRoFUsyaBZHQKPSu19fCyh1fZQoaAZoCWgPQwiSkbOwp00dwJSGlFKUaBVLMmgWR0Cj0ntFa0QcdX2UKGgGaAloD0MIGa95VWd1/L+UhpRSlGgVSzJoFkdAo9RFHYpUgnV9lChoBmgJaA9DCGSUZ14OOwDAlIaUUpRoFUsyaBZHQKPUCY2sJY11fZQoaAZoCWgPQwivX7Abti0CwJSGlFKUaBVLMmgWR0Cj0871yvLYdX2UKGgGaAloD0MIxhft8UJ6/r+UhpRSlGgVSzJoFkdAo9OOwqy4WnV9lChoBmgJaA9DCI9WtaSjHBXAlIaUUpRoFUsyaBZHQKPVSGfwqiJ1fZQoaAZoCWgPQwgFFOrpI1AJwJSGlFKUaBVLMmgWR0Cj1QzND+irdX2UKGgGaAloD0MI6PUn8blTAsCUhpRSlGgVSzJoFkdAo9TSSidrf3V9lChoBmgJaA9DCHjSwmUVdhLAlIaUUpRoFUsyaBZHQKPUkkcCHRF1fZQoaAZoCWgPQwgFpWjlXmD9v5SGlFKUaBVLMmgWR0Cj1kKh+OOsdX2UKGgGaAloD0MIo3kAi/zaAcCUhpRSlGgVSzJoFkdAo9YHIwM6R3V9lChoBmgJaA9DCMNkqmBUkhDAlIaUUpRoFUsyaBZHQKPVzG0/nnx1fZQoaAZoCWgPQwj6RQn6Cx0UwJSGlFKUaBVLMmgWR0Cj1YzGPxQSdX2UKGgGaAloD0MIXd2x2CZ1EMCUhpRSlGgVSzJoFkdAo9dvSjQAuXV9lChoBmgJaA9DCECKOnMPuRTAlIaUUpRoFUsyaBZHQKPXNSCvovB1fZQoaAZoCWgPQwgEcokjD5QVwJSGlFKUaBVLMmgWR0Cj1vpgb6xgdX2UKGgGaAloD0MIlX7C2a2FDcCUhpRSlGgVSzJoFkdAo9a6SA6Mi3V9lChoBmgJaA9DCCApIsMqHv+/lIaUUpRoFUsyaBZHQKPYfVH4Glh1fZQoaAZoCWgPQwglz/V9OKgGwJSGlFKUaBVLMmgWR0Cj2EHFHavidX2UKGgGaAloD0MIS7Gjcahf/b+UhpRSlGgVSzJoFkdAo9gHU6PsA3V9lChoBmgJaA9DCNvdA3RfrgbAlIaUUpRoFUsyaBZHQKPXx1xsEaF1fZQoaAZoCWgPQwhG71TAPc8HwJSGlFKUaBVLMmgWR0Cj2YdUCJXRdX2UKGgGaAloD0MI39+gvfroEMCUhpRSlGgVSzJoFkdAo9lL4Hoou3V9lChoBmgJaA9DCK6CGOjaVwzAlIaUUpRoFUsyaBZHQKPZESwnpjd1fZQoaAZoCWgPQwhkk/yIX0EVwJSGlFKUaBVLMmgWR0Cj2NEYGdI5dX2UKGgGaAloD0MIt5xLcVX5BMCUhpRSlGgVSzJoFkdAo9qK/O+qR3V9lChoBmgJaA9DCM+FkV7Urg/AlIaUUpRoFUsyaBZHQKPaT6O5rgx1fZQoaAZoCWgPQwiJljyelq8TwJSGlFKUaBVLMmgWR0Cj2hTyjHn2dX2UKGgGaAloD0MIVOQQcXMaEsCUhpRSlGgVSzJoFkdAo9nU6gdwN3V9lChoBmgJaA9DCONrzywJcATAlIaUUpRoFUsyaBZHQKPbigkC3gF1fZQoaAZoCWgPQwgQy2YOSY0FwJSGlFKUaBVLMmgWR0Cj206cAimmdX2UKGgGaAloD0MI/id/9446AsCUhpRSlGgVSzJoFkdAo9sT+BH09XV9lChoBmgJaA9DCPvOL0rQnw7AlIaUUpRoFUsyaBZHQKPa1AzHjp91fZQoaAZoCWgPQwh40y07xP8KwJSGlFKUaBVLMmgWR0Cj3JQ8OkLydX2UKGgGaAloD0MIasAg6dMKAMCUhpRSlGgVSzJoFkdAo9xY7FKkEnV9lChoBmgJaA9DCEhuTbot8QDAlIaUUpRoFUsyaBZHQKPcHiMo+fR1fZQoaAZoCWgPQwg9YYkHlG0BwJSGlFKUaBVLMmgWR0Cj294JVsDXdX2UKGgGaAloD0MIkpbK2xEuC8CUhpRSlGgVSzJoFkdAo93leF+NLnV9lChoBmgJaA9DCJ9x4UBIxhPAlIaUUpRoFUsyaBZHQKPdqvkBCD51fZQoaAZoCWgPQwh7pMFtbQEXwJSGlFKUaBVLMmgWR0Cj3XBsANobdX2UKGgGaAloD0MIhXmPM014BMCUhpRSlGgVSzJoFkdAo90wW3z+WHV9lChoBmgJaA9DCCtpxTcU3hTAlIaUUpRoFUsyaBZHQKPfGAVfu1F1fZQoaAZoCWgPQwhblNkgk8z9v5SGlFKUaBVLMmgWR0Cj3tx/NJOGdX2UKGgGaAloD0MIEFt6NNVzCcCUhpRSlGgVSzJoFkdAo96iu2Zy/HV9lChoBmgJaA9DCG5sdqT6rg7AlIaUUpRoFUsyaBZHQKPeYwudwvR1fZQoaAZoCWgPQwhG7BNAMdIFwJSGlFKUaBVLMmgWR0Cj4CEpAlfJdX2UKGgGaAloD0MIt7dbkgOmGsCUhpRSlGgVSzJoFkdAo9/lsvZh8nV9lChoBmgJaA9DCFZKz/QSY/m/lIaUUpRoFUsyaBZHQKPfqw0wait1fZQoaAZoCWgPQwhbYfpeQ3D1v5SGlFKUaBVLMmgWR0Cj32sTWXkYdX2UKGgGaAloD0MIX2Is0y8xA8CUhpRSlGgVSzJoFkdAo+E1GPPszHV9lChoBmgJaA9DCAMK9fQR+AjAlIaUUpRoFUsyaBZHQKPg+cBltj11fZQoaAZoCWgPQwgT7wBPWkgWwJSGlFKUaBVLMmgWR0Cj4L8p1A7gdX2UKGgGaAloD0MIaafmcoNBB8CUhpRSlGgVSzJoFkdAo+B/Ho5ggHV9lChoBmgJaA9DCHsUrkfhqhLAlIaUUpRoFUsyaBZHQKPiQod+5OJ1fZQoaAZoCWgPQwhXfEPhsxUKwJSGlFKUaBVLMmgWR0Cj4gciwB5pdX2UKGgGaAloD0MI4h+29GhKDcCUhpRSlGgVSzJoFkdAo+HMjopx3nV9lChoBmgJaA9DCPfoDfeRGw/AlIaUUpRoFUsyaBZHQKPhjI4lyBF1fZQoaAZoCWgPQwj6CtKMRRMQwJSGlFKUaBVLMmgWR0Cj40yNGViXdX2UKGgGaAloD0MIX2Is0y+xA8CUhpRSlGgVSzJoFkdAo+MRODaoM3V9lChoBmgJaA9DCGGkF7X7VRTAlIaUUpRoFUsyaBZHQKPi1pJPIn11fZQoaAZoCWgPQwhwsDcxJGcPwJSGlFKUaBVLMmgWR0Cj4panzg/DdX2UKGgGaAloD0MI6C/0iNHjFMCUhpRSlGgVSzJoFkdAo+RsSqU/wHV9lChoBmgJaA9DCCFWf4RhQAfAlIaUUpRoFUsyaBZHQKPkMQVbiZR1fZQoaAZoCWgPQwih9IWQ854SwJSGlFKUaBVLMmgWR0Cj4/a3I+4cdX2UKGgGaAloD0MIfXbAdcVMAsCUhpRSlGgVSzJoFkdAo+O23trsSnV9lChoBmgJaA9DCBuDTggd9ADAlIaUUpRoFUsyaBZHQKPliyE+Pil1fZQoaAZoCWgPQwhGtYgoJs8DwJSGlFKUaBVLMmgWR0Cj5U/OMVDbdX2UKGgGaAloD0MIiPNwAtM5E8CUhpRSlGgVSzJoFkdAo+UVJFspHHV9lChoBmgJaA9DCAfOGVHaWwTAlIaUUpRoFUsyaBZHQKPk1SrHU+d1fZQoaAZoCWgPQwgk0csolhv9v5SGlFKUaBVLMmgWR0Cj5p+l9BrvdX2UKGgGaAloD0MIX9TuVwG++r+UhpRSlGgVSzJoFkdAo+ZkRFqi5HV9lChoBmgJaA9DCGE1lrA29hPAlIaUUpRoFUsyaBZHQKPmKafjCHh1fZQoaAZoCWgPQwh7pMFtbQEAwJSGlFKUaBVLMmgWR0Cj5el+EytWdX2UKGgGaAloD0MIrMWnABgvEcCUhpRSlGgVSzJoFkdAo+fIbS7XhHV9lChoBmgJaA9DCGQHlbiOcQHAlIaUUpRoFUsyaBZHQKPnjShrWRR1fZQoaAZoCWgPQwgHJjeKrEUUwJSGlFKUaBVLMmgWR0Cj51NhE0BPdX2UKGgGaAloD0MIkUQvo1juB8CUhpRSlGgVSzJoFkdAo+cTYZl4DHV9lChoBmgJaA9DCExUbw1s1fu/lIaUUpRoFUsyaBZHQKPo980DU3J1fZQoaAZoCWgPQwiYT1YMV6cOwJSGlFKUaBVLMmgWR0Cj6L10T101dX2UKGgGaAloD0MIkGgCRSzCD8CUhpRSlGgVSzJoFkdAo+iDB42S+3V9lChoBmgJaA9DCCSX/5B+GxLAlIaUUpRoFUsyaBZHQKPoQx59mYl1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e845d8bada2e787941975d48964ce0884350b9f754cc281b5efbaeb04fcf186b
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1efb9a6df2b1b2adc3a0df424fe6fa589b2ee2185b96a1bd7562326cd4e065e8
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7380aab3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7380aa1ea0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674486710340317161, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAF5mmPnYYArxNrRQ/F5mmPnYYArxNrRQ/F5mmPnYYArxNrRQ/F5mmPnYYArxNrRQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJRytv48o2L9NKW4/JV57PllxYb/0sXs/YISlP4pBgz+d174/X4LTv+9dMD846py/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAXmaY+dhgCvE2tFD9kPMW4SVNwu/t0RTwXmaY+dhgCvE2tFD9kPMW4SVNwu/t0RTwXmaY+dhgCvE2tFD9kPMW4SVNwu/t0RTwXmaY+dhgCvE2tFD9kPMW4SVNwu/t0RTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.32538673 -0.0079404 0.58076936]\n [ 0.32538673 -0.0079404 0.58076936]\n [ 0.32538673 -0.0079404 0.58076936]\n [ 0.32538673 -0.0079404 0.58076936]]", "desired_goal": "[[-1.3524214 -1.6887378 0.9303177 ]\n [ 0.24547632 -0.8806358 0.9831841 ]\n [ 1.2931023 1.0254376 1.490955 ]\n [-1.6524161 0.6889333 -1.2258978 ]]", "observation": "[[ 3.2538673e-01 -7.9404023e-03 5.8076936e-01 -9.4049406e-05\n -3.6670736e-03 1.2051816e-02]\n [ 3.2538673e-01 -7.9404023e-03 5.8076936e-01 -9.4049406e-05\n -3.6670736e-03 1.2051816e-02]\n [ 3.2538673e-01 -7.9404023e-03 5.8076936e-01 -9.4049406e-05\n -3.6670736e-03 1.2051816e-02]\n [ 3.2538673e-01 -7.9404023e-03 5.8076936e-01 -9.4049406e-05\n -3.6670736e-03 1.2051816e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEH3dPfhl9L2gNek7BGqEPeRFvb2xjE48mzspO05uC73/MUc+YhUBvvMifj1zR34+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10814869 -0.11933511 0.00711699]\n [ 0.06465533 -0.09241846 0.01260679]\n [ 0.00258229 -0.03404074 0.19452666]\n [-0.12605813 0.06204505 0.24831943]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIamrZWl8kEMCUhpRSlIwBbJRLMowBdJRHQKPO94t6HCZ1fZQoaAZoCWgPQwiZZrrXST0GwJSGlFKUaBVLMmgWR0CjzrwtjCpFdX2UKGgGaAloD0MIpFGBk20AC8CUhpRSlGgVSzJoFkdAo86BsCT2WnV9lChoBmgJaA9DCAw9YvTcchLAlIaUUpRoFUsyaBZHQKPOQeFtbcJ1fZQoaAZoCWgPQwj3yycrhmv3v5SGlFKUaBVLMmgWR0Cjz/kyLyc1dX2UKGgGaAloD0MIuB0aFqPuBcCUhpRSlGgVSzJoFkdAo8+92Rq46XV9lChoBmgJaA9DCHIaogp/hva/lIaUUpRoFUsyaBZHQKPPg0ngHeJ1fZQoaAZoCWgPQwjryJHOwAgJwJSGlFKUaBVLMmgWR0Cjz0NEw35vdX2UKGgGaAloD0MIx2Rx/5EpAcCUhpRSlGgVSzJoFkdAo9D+ZTho/XV9lChoBmgJaA9DCGmPF9LhQQ/AlIaUUpRoFUsyaBZHQKPQwuscQy11fZQoaAZoCWgPQwjvAE9auMwMwJSGlFKUaBVLMmgWR0Cj0IhUBGQTdX2UKGgGaAloD0MIV1wclZto+7+UhpRSlGgVSzJoFkdAo9BIVymygXV9lChoBmgJaA9DCKKakqzD8QbAlIaUUpRoFUsyaBZHQKPSKAQxveh1fZQoaAZoCWgPQwjQRUPGo7QKwJSGlFKUaBVLMmgWR0Cj0ezY287IdX2UKGgGaAloD0MIg6Pk1TmmEcCUhpRSlGgVSzJoFkdAo9Gy+10DEHV9lChoBmgJaA9DCDo/xXHg9QHAlIaUUpRoFUsyaBZHQKPRcsJ6Y3N1fZQoaAZoCWgPQwjHLlG9NXAIwJSGlFKUaBVLMmgWR0Cj0zFJQLuydX2UKGgGaAloD0MIBMb6Bia3CsCUhpRSlGgVSzJoFkdAo9L1/BnBcnV9lChoBmgJaA9DCFQ1QdR9QA/AlIaUUpRoFUsyaBZHQKPSu19fCyh1fZQoaAZoCWgPQwiSkbOwp00dwJSGlFKUaBVLMmgWR0Cj0ntFa0QcdX2UKGgGaAloD0MIGa95VWd1/L+UhpRSlGgVSzJoFkdAo9RFHYpUgnV9lChoBmgJaA9DCGSUZ14OOwDAlIaUUpRoFUsyaBZHQKPUCY2sJY11fZQoaAZoCWgPQwivX7Abti0CwJSGlFKUaBVLMmgWR0Cj0871yvLYdX2UKGgGaAloD0MIxhft8UJ6/r+UhpRSlGgVSzJoFkdAo9OOwqy4WnV9lChoBmgJaA9DCI9WtaSjHBXAlIaUUpRoFUsyaBZHQKPVSGfwqiJ1fZQoaAZoCWgPQwgFFOrpI1AJwJSGlFKUaBVLMmgWR0Cj1QzND+irdX2UKGgGaAloD0MI6PUn8blTAsCUhpRSlGgVSzJoFkdAo9TSSidrf3V9lChoBmgJaA9DCHjSwmUVdhLAlIaUUpRoFUsyaBZHQKPUkkcCHRF1fZQoaAZoCWgPQwgFpWjlXmD9v5SGlFKUaBVLMmgWR0Cj1kKh+OOsdX2UKGgGaAloD0MIo3kAi/zaAcCUhpRSlGgVSzJoFkdAo9YHIwM6R3V9lChoBmgJaA9DCMNkqmBUkhDAlIaUUpRoFUsyaBZHQKPVzG0/nnx1fZQoaAZoCWgPQwj6RQn6Cx0UwJSGlFKUaBVLMmgWR0Cj1YzGPxQSdX2UKGgGaAloD0MIXd2x2CZ1EMCUhpRSlGgVSzJoFkdAo9dvSjQAuXV9lChoBmgJaA9DCECKOnMPuRTAlIaUUpRoFUsyaBZHQKPXNSCvovB1fZQoaAZoCWgPQwgEcokjD5QVwJSGlFKUaBVLMmgWR0Cj1vpgb6xgdX2UKGgGaAloD0MIlX7C2a2FDcCUhpRSlGgVSzJoFkdAo9a6SA6Mi3V9lChoBmgJaA9DCCApIsMqHv+/lIaUUpRoFUsyaBZHQKPYfVH4Glh1fZQoaAZoCWgPQwglz/V9OKgGwJSGlFKUaBVLMmgWR0Cj2EHFHavidX2UKGgGaAloD0MIS7Gjcahf/b+UhpRSlGgVSzJoFkdAo9gHU6PsA3V9lChoBmgJaA9DCNvdA3RfrgbAlIaUUpRoFUsyaBZHQKPXx1xsEaF1fZQoaAZoCWgPQwhG71TAPc8HwJSGlFKUaBVLMmgWR0Cj2YdUCJXRdX2UKGgGaAloD0MI39+gvfroEMCUhpRSlGgVSzJoFkdAo9lL4Hoou3V9lChoBmgJaA9DCK6CGOjaVwzAlIaUUpRoFUsyaBZHQKPZESwnpjd1fZQoaAZoCWgPQwhkk/yIX0EVwJSGlFKUaBVLMmgWR0Cj2NEYGdI5dX2UKGgGaAloD0MIt5xLcVX5BMCUhpRSlGgVSzJoFkdAo9qK/O+qR3V9lChoBmgJaA9DCM+FkV7Urg/AlIaUUpRoFUsyaBZHQKPaT6O5rgx1fZQoaAZoCWgPQwiJljyelq8TwJSGlFKUaBVLMmgWR0Cj2hTyjHn2dX2UKGgGaAloD0MIVOQQcXMaEsCUhpRSlGgVSzJoFkdAo9nU6gdwN3V9lChoBmgJaA9DCONrzywJcATAlIaUUpRoFUsyaBZHQKPbigkC3gF1fZQoaAZoCWgPQwgQy2YOSY0FwJSGlFKUaBVLMmgWR0Cj206cAimmdX2UKGgGaAloD0MI/id/9446AsCUhpRSlGgVSzJoFkdAo9sT+BH09XV9lChoBmgJaA9DCPvOL0rQnw7AlIaUUpRoFUsyaBZHQKPa1AzHjp91fZQoaAZoCWgPQwh40y07xP8KwJSGlFKUaBVLMmgWR0Cj3JQ8OkLydX2UKGgGaAloD0MIasAg6dMKAMCUhpRSlGgVSzJoFkdAo9xY7FKkEnV9lChoBmgJaA9DCEhuTbot8QDAlIaUUpRoFUsyaBZHQKPcHiMo+fR1fZQoaAZoCWgPQwg9YYkHlG0BwJSGlFKUaBVLMmgWR0Cj294JVsDXdX2UKGgGaAloD0MIkpbK2xEuC8CUhpRSlGgVSzJoFkdAo93leF+NLnV9lChoBmgJaA9DCJ9x4UBIxhPAlIaUUpRoFUsyaBZHQKPdqvkBCD51fZQoaAZoCWgPQwh7pMFtbQEXwJSGlFKUaBVLMmgWR0Cj3XBsANobdX2UKGgGaAloD0MIhXmPM014BMCUhpRSlGgVSzJoFkdAo90wW3z+WHV9lChoBmgJaA9DCCtpxTcU3hTAlIaUUpRoFUsyaBZHQKPfGAVfu1F1fZQoaAZoCWgPQwhblNkgk8z9v5SGlFKUaBVLMmgWR0Cj3tx/NJOGdX2UKGgGaAloD0MIEFt6NNVzCcCUhpRSlGgVSzJoFkdAo96iu2Zy/HV9lChoBmgJaA9DCG5sdqT6rg7AlIaUUpRoFUsyaBZHQKPeYwudwvR1fZQoaAZoCWgPQwhG7BNAMdIFwJSGlFKUaBVLMmgWR0Cj4CEpAlfJdX2UKGgGaAloD0MIt7dbkgOmGsCUhpRSlGgVSzJoFkdAo9/lsvZh8nV9lChoBmgJaA9DCFZKz/QSY/m/lIaUUpRoFUsyaBZHQKPfqw0wait1fZQoaAZoCWgPQwhbYfpeQ3D1v5SGlFKUaBVLMmgWR0Cj32sTWXkYdX2UKGgGaAloD0MIX2Is0y8xA8CUhpRSlGgVSzJoFkdAo+E1GPPszHV9lChoBmgJaA9DCAMK9fQR+AjAlIaUUpRoFUsyaBZHQKPg+cBltj11fZQoaAZoCWgPQwgT7wBPWkgWwJSGlFKUaBVLMmgWR0Cj4L8p1A7gdX2UKGgGaAloD0MIaafmcoNBB8CUhpRSlGgVSzJoFkdAo+B/Ho5ggHV9lChoBmgJaA9DCHsUrkfhqhLAlIaUUpRoFUsyaBZHQKPiQod+5OJ1fZQoaAZoCWgPQwhXfEPhsxUKwJSGlFKUaBVLMmgWR0Cj4gciwB5pdX2UKGgGaAloD0MI4h+29GhKDcCUhpRSlGgVSzJoFkdAo+HMjopx3nV9lChoBmgJaA9DCPfoDfeRGw/AlIaUUpRoFUsyaBZHQKPhjI4lyBF1fZQoaAZoCWgPQwj6CtKMRRMQwJSGlFKUaBVLMmgWR0Cj40yNGViXdX2UKGgGaAloD0MIX2Is0y+xA8CUhpRSlGgVSzJoFkdAo+MRODaoM3V9lChoBmgJaA9DCGGkF7X7VRTAlIaUUpRoFUsyaBZHQKPi1pJPIn11fZQoaAZoCWgPQwhwsDcxJGcPwJSGlFKUaBVLMmgWR0Cj4panzg/DdX2UKGgGaAloD0MI6C/0iNHjFMCUhpRSlGgVSzJoFkdAo+RsSqU/wHV9lChoBmgJaA9DCCFWf4RhQAfAlIaUUpRoFUsyaBZHQKPkMQVbiZR1fZQoaAZoCWgPQwih9IWQ854SwJSGlFKUaBVLMmgWR0Cj4/a3I+4cdX2UKGgGaAloD0MIfXbAdcVMAsCUhpRSlGgVSzJoFkdAo+O23trsSnV9lChoBmgJaA9DCBuDTggd9ADAlIaUUpRoFUsyaBZHQKPliyE+Pil1fZQoaAZoCWgPQwhGtYgoJs8DwJSGlFKUaBVLMmgWR0Cj5U/OMVDbdX2UKGgGaAloD0MIiPNwAtM5E8CUhpRSlGgVSzJoFkdAo+UVJFspHHV9lChoBmgJaA9DCAfOGVHaWwTAlIaUUpRoFUsyaBZHQKPk1SrHU+d1fZQoaAZoCWgPQwgk0csolhv9v5SGlFKUaBVLMmgWR0Cj5p+l9BrvdX2UKGgGaAloD0MIX9TuVwG++r+UhpRSlGgVSzJoFkdAo+ZkRFqi5HV9lChoBmgJaA9DCGE1lrA29hPAlIaUUpRoFUsyaBZHQKPmKafjCHh1fZQoaAZoCWgPQwh7pMFtbQEAwJSGlFKUaBVLMmgWR0Cj5el+EytWdX2UKGgGaAloD0MIrMWnABgvEcCUhpRSlGgVSzJoFkdAo+fIbS7XhHV9lChoBmgJaA9DCGQHlbiOcQHAlIaUUpRoFUsyaBZHQKPnjShrWRR1fZQoaAZoCWgPQwgHJjeKrEUUwJSGlFKUaBVLMmgWR0Cj51NhE0BPdX2UKGgGaAloD0MIkUQvo1juB8CUhpRSlGgVSzJoFkdAo+cTYZl4DHV9lChoBmgJaA9DCExUbw1s1fu/lIaUUpRoFUsyaBZHQKPo980DU3J1fZQoaAZoCWgPQwiYT1YMV6cOwJSGlFKUaBVLMmgWR0Cj6L10T101dX2UKGgGaAloD0MIkGgCRSzCD8CUhpRSlGgVSzJoFkdAo+iDB42S+3V9lChoBmgJaA9DCCSX/5B+GxLAlIaUUpRoFUsyaBZHQKPoQx59mYl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (716 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.3611103953793644, "std_reward": 1.229507165028605, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T15:57:47.901779"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5134a92a176f2012d3b301c49addf5bbb410a842a3ca2e09d2bd509eadc909a
3
+ size 3049